In real-life conversations, the content is diverse, and there exist one-to-many problems that require diverse generation. Previous studies attempted to introduce discrete or Gaussian-based latent variables to address the one-to-many problem, but the diversity is limited. Recently, diffusion models have made breakthroughs in computer vision and some attempts have been made in natural language processing. In this paper, we propose DiffusionDialog, a novel approach to enhance the diversity of dialogue generation with the help of diffusion model. In our approach, we introduce the continuous latent variables in the diffusion model instead of the discrete ones or VAE, which are often used in the previous studies. The problem of using discrete variables in dialog task is how to build a effective prior of latent space and inferring process to infer the proper latent given the context. Combining the encoder and latent-based diffusion model, we encode the latent of response in a continuous space as the prior instead of fixed Gaussian distribution in VAE or simply discrete ones, and we infer the latent by denoising step by step with diffusion model. The experimental results show that our model greatly enhance the diversity of dialog response while keeping the coherence. In further analysis, we find that our diffusion model achieved high inference efficiency which is the main challenge of applying diffusion model in natural language processing.
Recent generative large language models (LLMs) have exhibited incredible instruction-following capabilities while keeping strong task completion ability, even without task-specific fine-tuning. Some works attribute this to the bonus of the new scaling law, in which the continuous improvement of model capacity yields emergent capabilities, e.g., reasoning and universal generalization. However, we point out that recent LLMs still show shortcut learning behavior, where the models tend to exploit spurious correlations between non-robust features and labels for prediction, which might lead to overestimating model capabilities. LLMs memorize more complex spurious correlations (i.e., task ↔ feature ↔ label) compared with that learned from previous pre-training and task-specific fine-tuning paradigm (i.e., feature ↔ label). Based on our findings, we propose FSLI, a framework for encouraging LLMs to Forget Spurious correlations and Learn from In-context information. Experiments on three tasks show that FSFI can effectively mitigate shortcut learning. Besides, we argue not to overestimate the capabilities of LLMs and conduct evaluations in more challenging and complete test scenarios.
Zero-shot dialogue state tracking (DST) transfers knowledge to unseen domains, reducing the cost of annotating new datasets. Previous zero-shot DST models mainly suffer from domain transferring and partial prediction problems. To address these challenges, we propose Mixture of Prefix Experts (MoPE) to establish connections between similar slots in different domains, which strengthens the model transfer performance in unseen domains. Empirical results demonstrate that MoPE-DST achieves the joint goal accuracy of 57.13% on MultiWOZ2.1 and 55.4.
Large Language Models (LLMs) have shown their impressive capabilities, while also raising concerns about the data contamination problems due to privacy issues and leakage of benchmark datasets in the pre-training phase. Therefore, it is vital to detect the contamination by checking whether an LLM has been pre-trained on the target texts. Recent studies focus on the generated texts and compute perplexities, which are superficial features and not reliable. In this study, we propose to utilize the probing technique for pre-training data detection by examining the model’s internal activations. Our method is simple and effective and leads to more trustworthy pre-training data detection. Additionally, we propose ArxivMIA, a new challenging benchmark comprising arxiv abstracts from Computer Science and Mathematics categories. Our experiments demonstrate that our method outperforms all baselines, and achieves state-of-the-art performance on both WikiMIA and ArxivMIA, with additional experiments confirming its efficacy.
“多标签文本分类((Multi-Label Text Classification, MLTC)旨在从预定义的候选标签集合中选择一个或多个文本对应的类别,是自然语言处理C)旨在从预定义的候选标签集合中选择一个或多个文本对应的类别,是自然语言处理(Natural Language Processing,NLP)的一项基本任务。前人工作大多基于规范且全面的标注数据集,而这些规范数据集需要严格的质量控制,一般很难获取。在真实的标注过程中,难免会丢失掉一些相关标签,进而导致不完全标注问题。为此本文提出了一种基于局部标注的自监督框架(Partial Self-Training,PST),该框架利用教师模型自动地给大规模无标注数据打伪标签,同时给不完全标注数据补充缺失标签,最后再利用这些数据反向更新教师模型。在合成数据集和真实数据集上的实验表明,本文提出的PST框架兼容现有的各类多标签文本分类模型,并且可以缓解不完全标注数据对模型的影响。”
One of the main challenges open-domain end-to-end dialogue systems, or chatbots, face is the prevalence of unsafe behavior, such as toxic languages and harmful suggestions. However, existing dialogue datasets do not provide enough annotation to explain and correct such unsafe behavior. In this work, we construct a new dataset called SafeConv for the research of conversational safety: (1) Besides the utterance-level safety labels, SafeConv also provides unsafe spans in an utterance, information able to indicate which words contribute to the detected unsafe behavior; (2) SafeConv provides safe alternative responses to continue the conversation when unsafe behavior detected, guiding the conversation to a gentle trajectory. By virtue of the comprehensive annotation of SafeConv, we benchmark three powerful models for the mitigation of conversational unsafe behavior, including a checker to detect unsafe utterances, a tagger to extract unsafe spans, and a rewriter to convert an unsafe response to a safe version. Moreover, we explore the huge benefits brought by combining the models for explaining the emergence of unsafe behavior and detoxifying chatbots. Experiments show that the detected unsafe behavior could be well explained with unsafe spans and popular chatbots could be detoxified by a huge extent. The dataset is available at https://github.com/mianzhang/SafeConv.
Dynamic early exit has demonstrated great potential in coping with the sharply increasing number of pre-trained language model parameters, which can achieve a good trade-off between performance and efficiency. The existing early exit paradigm relies on training parametrical internal classifiers at each intermediate layer to complete specific tasks. Based on the predictions of these internal classifiers, different methods are designed to decide when to exit. Under this circumstance, each intermediate layer takes on both generic language representation learning and task-specific feature extraction, which makes each intermediate layer struggle to balance two types of backward loss signals during training. To break this dilemma, we propose an adapter method to decouple the two distinct types of representation and further introduce a non-parametric simplex equiangular tight frame classifier (ETF) for improvement. Extensive experiments on monolingual and multilingual tasks demonstrate that our method gains significant improvements over strong PLM backbones and early exit methods.
Sharing knowledge between information extraction tasks has always been a challenge due to the diverse data formats and task variations. Meanwhile, this divergence leads to information waste and increases difficulties in building complex applications in real scenarios. Recent studies often formulate IE tasks as a triplet extraction problem. However, such a paradigm does not support multi-span and n-ary extraction, leading to weak versatility. To this end, we reorganize IE problems into unified multi-slot tuples and propose a universal framework for various IE tasks, namely Mirror. Specifically, we recast existing IE tasks as a multi-span cyclic graph extraction problem and devise a non-autoregressive graph decoding algorithm to extract all spans in a single step. It is worth noting that this graph structure is incredibly versatile, and it supports not only complex IE tasks, but also machine reading comprehension and classification tasks. We manually construct a corpus containing 57 datasets for model pretraining, and conduct experiments on 30 datasets across 8 downstream tasks. The experimental results demonstrate that our model has decent compatibility and outperforms or reaches competitive performance with SOTA systems under few-shot and zero-shot settings. The code, model weights, and pretraining corpus are available at https://github.com/Spico197/Mirror .
The conventional success of textual classification relies on annotated data, and the new paradigm of pre-trained language models (PLMs) still requires a few labeled data for downstream tasks. However, in real-world applications, label noise inevitably exists in training data, damaging the effectiveness, robustness, and generalization of the models constructed on such data. Recently, remarkable achievements have been made to mitigate this dilemma in visual data, while only a few explore textual data. To fill this gap, we present SelfMix, a simple yet effective method, to handle label noise in text classification tasks. SelfMix uses the Gaussian Mixture Model to separate samples and leverages semi-supervised learning. Unlike previous works requiring multiple models, our method utilizes the dropout mechanism on a single model to reduce the confirmation bias in self-training and introduces a textual level mixup training strategy. Experimental results on three text classification benchmarks with different types of text show that the performance of our proposed method outperforms these strong baselines designed for both textual and visual data under different noise ratios and noise types. Our anonymous code is available at https://github.com/noise-learning/SelfMix.
We present a simple yet effective self-training approach, named as STAD, for low-resource relation extraction. The approach first classifies the auto-annotated instances into two groups: confident instances and uncertain instances, according to the probabilities predicted by a teacher model. In contrast to most previous studies, which mainly only use the confident instances for self-training, we make use of the uncertain instances. To this end, we propose a method to identify ambiguous but useful instances from the uncertain instances and then divide the relations into candidate-label set and negative-label set for each ambiguous instance. Next, we propose a set-negative training method on the negative-label sets for the ambiguous instances and a positive training method for the confident instances. Finally, a joint-training method is proposed to build the final relation extraction system on all data. Experimental results on two widely used datasets SemEval2010 Task-8 and Re-TACRED with low-resource settings demonstrate that this new self-training approach indeed achieves significant and consistent improvements when comparing to several competitive self-training systems.
Supervised models for Relation Extraction (RE) typically require human-annotated training data. Due to the limited size, the human-annotated data is usually incapable of covering diverse relation expressions, which could limit the performance of RE. To increase the coverage of relation expressions, we may enlarge the labeled data by hiring annotators or applying Distant Supervision (DS). However, the human-annotated data is costly and non-scalable while the distantly supervised data contains many noises. In this paper, we propose an alternative approach to improve RE systems via enriching diverse expressions by relational paraphrase sentences. Based on an existing labeled data, we first automatically build a task-specific paraphrase data. Then, we propose a novel model to learn the information of diverse relation expressions. In our model, we try to capture this information on the paraphrases via a joint learning framework. Finally, we conduct experiments on a widely used dataset and the experimental results show that our approach is effective to improve the performance on relation extraction, even compared with a strong baseline.
In recent years, distantly-supervised relation extraction has achieved a certain success by using deep neural networks. Distant Supervision (DS) can automatically generate large-scale annotated data by aligning entity pairs from Knowledge Bases (KB) to sentences. However, these DS-generated datasets inevitably have wrong labels that result in incorrect evaluation scores during testing, which may mislead the researchers. To solve this problem, we build a new dataset NYTH, where we use the DS-generated data as training data and hire annotators to label test data. Compared with the previous datasets, NYT-H has a much larger test set and then we can perform more accurate and consistent evaluation. Finally, we present the experimental results of several widely used systems on NYT-H. The experimental results show that the ranking lists of the comparison systems on the DS-labelled test data and human-annotated test data are different. This indicates that our human-annotated data is necessary for evaluation of distantly-supervised relation extraction.
A bottleneck problem with Chinese named entity recognition (NER) in new domains is the lack of annotated data. One solution is to utilize the method of distant supervision, which has been widely used in relation extraction, to automatically populate annotated training data without humancost. The distant supervision assumption here is that if a string in text is included in a predefined dictionary of entities, the string might be an entity. However, this kind of auto-generated data suffers from two main problems: incomplete and noisy annotations, which affect the performance of NER models. In this paper, we propose a novel approach which can partially solve the above problems of distant supervision for NER. In our approach, to handle the incomplete problem, we apply partial annotation learning to reduce the effect of unknown labels of characters. As for noisy annotation, we design an instance selector based on reinforcement learning to distinguish positive sentences from auto-generated annotations. In experiments, we create two datasets for Chinese named entity recognition in two domains with the help of distant supervision. The experimental results show that the proposed approach obtains better performance than the comparison systems on both two datasets.
In this paper, we propose an approach to learn distributed representations of users and items from text comments for recommendation systems. Traditional recommendation algorithms, e.g. collaborative filtering and matrix completion, are not designed to exploit the key information hidden in the text comments, while existing opinion mining methods do not provide direct support to recommendation systems with useful features on users and items. Our approach attempts to construct vectors to represent profiles of users and items under a unified framework to maximize word appearance likelihood. Then, the vector representations are used for a recommendation task in which we predict scores on unobserved user-item pairs without given texts. The recommendation-aware distributed representation approach is fully supported by effective and efficient learning algorithms over massive text archive. Our empirical evaluations on real datasets show that our system outperforms the state-of-the-art baseline systems.