Wenxuan Ding


2024

pdf bib
Knowledge Crosswords: Geometric Knowledge Reasoning with Large Language Models
Wenxuan Ding | Shangbin Feng | Yuhan Liu | Zhaoxuan Tan | Vidhisha Balachandran | Tianxing He | Yulia Tsvetkov
Findings of the Association for Computational Linguistics ACL 2024

We propose Knowledge Crosswords, a geometric knowledge reasoning benchmark consisting of incomplete knowledge networks bounded by structured factual constraints, where LLMs are tasked with inferring the missing facts to meet all constraints. The novel setting of geometric knowledge reasoning necessitates new LM abilities beyond existing atomic/linear multi-hop QA, such as backtracking, verifying facts and constraints, reasoning with uncertainty, and more. Knowledge Crosswords contains 2,101 individual problems, covering diverse knowledge domains, and is further divided into three difficulty levels. We conduct extensive experiments to evaluate existing LLMs and approaches on Knowledge Crosswords. Results demonstrate that baseline approaches struggle with larger knowledge networks and semantically-equivalent entity distractors. In light of their limitations, we propose two new approaches, Staged Prompting and Verify-All, to augment LLMs’ abilities for error-aware backtracking and constraint verification. Our Verify-All significantly outperforms prior methods and is more robust towards problems in the hard subset. Further analysis shows that geometric knowledge reasoning poses new challenges to LLMs’ knowledge abilities, particularly in robustness towards varying option orders, complex structural constraints in knowledge networks, “none of the above” scenarios, and more.

pdf bib
CANDLE: Iterative Conceptualization and Instantiation Distillation from Large Language Models for Commonsense Reasoning
Weiqi Wang | Tianqing Fang | Chunyang Li | Haochen Shi | Wenxuan Ding | Baixuan Xu | Zhaowei Wang | Jiaxin Bai | Xin Liu | Cheng Jiayang | Chunkit Chan | Yangqiu Song
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The sequential process of conceptualization and instantiation is essential to generalizable commonsense reasoning as it allows the application of existing knowledge to unfamiliar scenarios. However, existing works tend to undervalue the step of instantiation and heavilyrely on pre-built concept taxonomies and human annotations to collect both types of knowledge, resulting in a lack of instantiated knowledge to complete reasoning, high cost, and limited scalability. To tackle these challenges, we introduce CANDLE (ConceptuAlizationand INstantiation Distillation from Large Language ModEls), a distillation framework that iteratively performs contextualized conceptualization and instantiation over commonsense knowledge bases by instructing large language models to generate both types of knowledge with critic filtering. By applying CANDLE to ATOMIC (Sap et al., 2019a), we construct a comprehensive knowledge base comprising six million conceptualizations and instantiated commonsense knowledge triples. Both types of knowledge are firmly rooted in the original ATOMIC dataset, and intrinsic evaluations demonstrate their exceptional quality and diversity. Empirical results indicate that distilling CANDLE on student models provides benefits across three downstream tasks. Our data and models are publicly available at https://github.com/HKUST-KnowComp/CANDLE.

pdf bib
Don’t Hallucinate, Abstain: Identifying LLM Knowledge Gaps via Multi-LLM Collaboration
Shangbin Feng | Weijia Shi | Yike Wang | Wenxuan Ding | Vidhisha Balachandran | Yulia Tsvetkov
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite efforts to expand the knowledge of large language models (LLMs), knowledge gaps—missing or outdated information in LLMs—might always persist given the evolving nature of knowledge. In this work, we study approaches to identify LLM knowledge gaps and abstain from answering questions when knowledge gaps are present. We first adapt existing approaches to model calibration or adaptation through fine-tuning/prompting and analyze their ability to abstain from generating low-confidence outputs. Motivated by their failures in self-reflection and over-reliance on held-out sets, we propose two novel approaches that are based on model collaboration, i.e., LLMs probing other LLMs for knowledge gaps, either cooperatively or competitively. Extensive experiments with three LLMs on four QA tasks featuring diverse knowledge domains demonstrate that both cooperative and competitive approaches to unveiling LLM knowledge gaps achieve up to 19.3% improvements on abstain accuracy against the strongest baseline. Further analysis reveals that our abstention methods pinpoint failure cases in retrieval augmentation and knowledge gaps in multi-hop reasoning.

2023

pdf bib
CAR: Conceptualization-Augmented Reasoner for Zero-Shot Commonsense Question Answering
Weiqi Wang | Tianqing Fang | Wenxuan Ding | Baixuan Xu | Xin Liu | Yangqiu Song | Antoine Bosselut
Findings of the Association for Computational Linguistics: EMNLP 2023

The task of zero-shot commonsense question answering evaluates models on their capacity to reason about general scenarios beyond those presented in specific datasets. Existing approaches for tackling this task leverage external knowledge from CommonSense Knowledge Bases (CSKBs) by pre-training the model on synthetic QA pairs constructed from CSKBs. In these approaches, negative examples (distractors) are formulated by randomly sampling from CSKBs using fairly primitive keyword constraints. However, two bottlenecks limit these approaches: the inherent incompleteness of CSKBs limits the semantic coverage of synthetic QA pairs, and the lack of human annotations makes the sampled negative examples potentially uninformative and contradictory. To tackle these limitations above, we propose Conceptualization-Augmented Reasoner (CAR), a zero-shot commonsense question-answering framework that fully leverages the power of conceptualization. Specifically, CAR abstracts a commonsense knowledge triple to many higher-level instances, which increases the coverage of the CSKB and expands the ground-truth answer space, reducing the likelihood of selecting false negative distractors. Extensive experiments demonstrate that CAR more robustly generalizes to answering questions about zero-shot commonsense scenarios than existing methods, including large language models, such as GPT3.5 and ChatGPT. Our code, data, and model checkpoints are available at https://github.com/HKUST-KnowComp/CAR.

pdf bib
QADYNAMICS: Training Dynamics-Driven Synthetic QA Diagnostic for Zero-Shot Commonsense Question Answering
Haochen Shi | Weiqi Wang | Tianqing Fang | Baixuan Xu | Wenxuan Ding | Xin Liu | Yangqiu Song
Findings of the Association for Computational Linguistics: EMNLP 2023

Zero-shot commonsense Question-Answering (QA) requires models to reason about general situations beyond specific benchmarks. State-of-the-art approaches fine-tune language models on QA pairs constructed from CommonSense Knowledge Bases (CSKBs) to equip the models with more commonsense knowledge in a QA context. However, current QA synthesis protocols may introduce noise from the CSKBs and generate ungrammatical questions and false negative options, which impede the model’s ability to generalize. To address these issues, we propose QADYNAMICS, a training dynamics-driven framework for QA diagnostics and refinement. Our approach analyzes the training dynamics of each QA pair at both the question level and option level, discarding machine-detectable artifacts by removing uninformative QA pairs and mislabeled or false-negative options. Extensive experiments demonstrate the effectiveness of our approach, which outperforms all baselines while using only 33% of the synthetic data, even including LLMs such as ChatGPT. Moreover, expert evaluations confirm that our framework significantly improves the quality of QA synthesis. Our code and model checkpoints are available at https://github.com/HKUST-KnowComp/QaDynamics.