Discontinuous entities pose a challenge to named entity recognition (NER). These phenomena occur commonly in the biomedical domain. As a solution, expansions of the BIO representation scheme that can handle these entity types are commonly used (i.e. BIOHD). However, the extra tag types make the NER task more difficult to learn. In this paper we propose an alternative; a fuzzy continuous BIO scheme (FuzzyBIO). We focus on the task of Adverse Drug Response extraction and normalization to compare FuzzyBIO to BIOHD. We find that FuzzyBIO improves recall of NER for two of three data sets and results in a higher percentage of correctly identified disjoint and composite entities for all data sets. Using FuzzyBIO also improves end-to-end performance for continuous and composite entities in two of three data sets. Since FuzzyBIO improves performance for some data sets and the conversion from BIOHD to FuzzyBIO is straightforward, we recommend investigating which is more effective for any data set containing discontinuous entities.
Previous approaches to NLP tasks on online patient forums have been limited to single posts as units, thereby neglecting the overarching conversational structure. In this paper we explore the benefit of exploiting conversational context for filtering posts relevant to a specific medical topic. We experiment with two approaches to add conversational context to a BERT model: a sequential CRF layer and manually engineered features. Although neither approach can outperform the F1 score of the BERT baseline, we find that adding a sequential layer improves precision for all target classes whereas adding a non-sequential layer with manually engineered features leads to a higher recall for two out of three target classes. Thus, depending on the end goal, conversation-aware modelling may be beneficial for identifying relevant messages. We hope our findings encourage other researchers in this domain to move beyond studying messages in isolation towards more discourse-based data collection and classification. We release our code for the purpose of follow-up research.
In the medical domain, user-generated social media text is increasingly used as a valuable complementary knowledge source to scientific medical literature. The extraction of this knowledge is complicated by colloquial language use and misspellings. Yet, lexical normalization of such data has not been addressed properly. This paper presents an unsupervised, data-driven spelling correction module for medical social media. Our method outperforms state-of-the-art spelling correction and can detect mistakes with an F0.5 of 0.888. Additionally, we present a novel corpus for spelling mistake detection and correction on a medical patient forum.