William Brannon


2024

pdf bib
ConGraT: Self-Supervised Contrastive Pretraining for Joint Graph and Text Embeddings
William Brannon | Wonjune Kang | Suyash Fulay | Hang Jiang | Brandon Roy | Deb Roy | Jad Kabbara
Proceedings of TextGraphs-17: Graph-based Methods for Natural Language Processing

Learning on text-attributed graphs (TAGs), in which nodes are associated with one or more texts, has been the subject of much recent work. However, most approaches tend to make strong assumptions about the downstream task of interest, are reliant on hand-labeled data, or fail to equally balance the importance of both text and graph representations. In this work, we propose Contrastive Graph-Text pretraining (ConGraT), a general, self-supervised approach for jointly learning separate representations of texts and nodes in a TAG. Our method trains a language model (LM) and a graph neural network (GNN) to align their representations in a common latent space using a batch-wise contrastive learning objective inspired by CLIP. We further propose an extension to the CLIP objective that leverages graph structure to incorporate information about inter-node similarity. Extensive experiments demonstrate that ConGraT outperforms baselines on various downstream tasks, including node and text category classification, link prediction, and language modeling. Finally, we present an application of our method to community detection in social graphs, which enables finding more textually grounded communities, rather than purely graph-based ones.

2023

pdf bib
Dubbing in Practice: A Large Scale Study of Human Localization With Insights for Automatic Dubbing
William Brannon | Yogesh Virkar | Brian Thompson
Transactions of the Association for Computational Linguistics, Volume 11

We investigate how humans perform the task of dubbing video content from one language into another, leveraging a novel corpus of 319.57 hours of video from 54 professionally produced titles. This is the first such large-scale study we are aware of. The results challenge a number of assumptions commonly made in both qualitative literature on human dubbing and machine-learning literature on automatic dubbing, arguing for the importance of vocal naturalness and translation quality over commonly emphasized isometric (character length) and lip-sync constraints, and for a more qualified view of the importance of isochronic (timing) constraints. We also find substantial influence of the source-side audio on human dubs through channels other than the words of the translation, pointing to the need for research on ways to preserve speech characteristics, as well as transfer of semantic properties such as emphasis and emotion, in automatic dubbing systems.