For a LLM to be trustworthy, its confidence level should be well-calibrated with its actual performance. While it is now common sense that LLM performances are greatly impacted by prompts, the confidence calibration in prompting LLMs has yet to be thoroughly explored.In this paper, we explore how different prompting strategies influence LLM confidence calibration and how it could be improved. We conduct extensive experiments on six prompting methods in the question-answering context and we observe that, while these methods help improve the expected LLM calibration, they also trigger LLMs to be over-confident when responding to some instances.Inspired by human cognition, we propose Fact-and-Reflection (FaR) prompting, which improves the LLM calibration in two steps. First, FaR elicits the known “facts” that are relevant to the input prompt from the LLM. And then it asks the model to “reflect” over them to generate the final answer.Experiments show that FaR prompting achieves significantly better calibration; it lowers the Expected Calibration Error by 23.5% on our multi-purpose QA tasks. Notably, FaR prompting even elicits the capability of verbally expressing concerns in less confident scenarios, which helps trigger retrieval augmentation for solving these harder instances.
Reasoning in mathematical domains remains a significant challenge for relatively small language models (LMs). Many current methods focus on specializing LMs in mathematical reasoning and rely heavily on distilling knowledge from powerful yet inefficient large LMs (LLMs). In this work, we explore a new direction that avoids over-reliance on LLM teachers, introducing a multi-view fine-tuning method that efficiently exploits existing mathematical problem datasets with diverse annotation styles. Our approach uniquely considers the various annotation formats as different “views” that may help each other and leverage them in training the model. By postpending distinct instructions to input questions, models can learn to generate solutions in diverse formats in a flexible manner. Experimental results show that our strategy enables relatively small LMs to outperform prior approaches that heavily rely on knowledge distillation, as well as carefully established baselines. Additionally, the proposed method grants the models promising generalization ability across various views and datasets, and the capability to learn from inaccurate or incomplete noisy data. We hope our multi-view training paradigm could inspire future studies in other machine reasoning domains.
Large Language Models (LLMs) have achieved remarkable success, where instruction tuning is the critical step in aligning LLMs with user intentions. In this work, we investigate how the instruction tuning adjusts pre-trained models with a focus on intrinsic changes. Specifically, we first develop several local and global explanation methods, including a gradient-based method for input-output attribution, and techniques for interpreting patterns and concepts in self-attention and feed-forward layers. The impact of instruction tuning is then studied by comparing the explanations derived from the pre-trained and instruction-tuned models. This approach provides an internal perspective of the model shifts on a human-comprehensible level. Our findings reveal three significant impacts of instruction tuning: 1) It empowers LLMs to recognize the instruction parts of user prompts, and promotes the response generation constantly conditioned on the instructions. 2) It encourages the self-attention heads to capture more word-word relationships about instruction verbs. 3) It encourages the feed-forward networks to rotate their pre-trained knowledge toward user-oriented tasks. These insights contribute to a more comprehensive understanding of instruction tuning and lay the groundwork for future work that aims at explaining and optimizing LLMs for various applications. Our code and data are publicly available at https://github.com/JacksonWuxs/Interpret_Instruction_Tuning_LLMs.
We focus on the factuality property during the extraction of an OpenIE corpus named OpenFact, which contains more than 12 million high-quality knowledge triplets. We break down the factuality property into two important aspects—expressiveness and groundedness—and we propose a comprehensive framework to handle both aspects. To enhance expressiveness, we formulate each knowledge piece in OpenFact based on a semantic frame. We also design templates, extra constraints, and adopt human efforts so that most OpenFact triplets contain enough details. For groundedness, we require the main arguments of each triplet to contain linked Wikidata1 entities. A human evaluation suggests that the OpenFact triplets are much more accurate and contain denser information compared to OPIEC-Linked (Gashteovski et al., 2019), one recent high-quality OpenIE corpus grounded to Wikidata. Further experiments on knowledge base completion and knowledge base question answering show the effectiveness of OpenFact over OPIEC-Linked as supplementary knowledge to Wikidata as the major KG.
Although large language models have exhibited impressive zero-shot ability, the huge model size generally incurs high cost. Recently, semi-parametric language models, which augment a smaller language model with retrieved related background knowledge, alleviate the need for storing everything into the model parameters. Although existing semi-parametric language models have demonstrated promising language modeling capabilities, it remains unclear whether they can exhibit competitive zero-shot abilities as their fully-parametric counterparts. In this work, we introduce Zemi, a semi-parametric language model for zero-shot task generalization. To our best knowledge, this is the first semi-parametric language model that can demonstrate strong zero-shot performance on a wide range of held-out unseen tasks. We train Zemi with semi-parametric multitask training, which shows significant improvement compared with the parametric multitask training as proposed by T0. Specifically, during both training and inference, Zemi is equipped with a retrieval system based on the unlabeled pretraining corpus of our backbone model. To address the unique challenges from large-scale retrieval, we further propose a novel retrieval-augmentation fusion module that can effectively incorporate noisy retrieved documents. Finally, we show detailed analysis and ablation studies on the key ingredients towards building effective zero-shot semi-parametric language models. Notably, our proposed Zemi_Large model outperforms T0-3B by 16% across seven diverse evaluation tasks while being 3.8x smaller in scale.
Aspect or query-based summarization has recently caught more attention, as it can generate differentiated summaries based on users’ interests. However, the current dataset for aspect or query-based summarization either focuses on specific domains, on a relatively small scale, or contains only a few aspect types. Such limitations hinder further explorations in this direction. In this work, we take advantage of crowd-sourcing knowledge on Wikipedia and automatically create a high-quality, large-scale open-domain aspect-based summarization dataset named OASum, which contains more than 3.7 million instances with around 1 million different aspects on 2 million Wikipedia pages. We provide benchmark results on OASum and demonstrate its ability for diverse aspect-based summarization generation. To overcome the data scarcity problem on specific domains, we also perform zero-shot, few-shot, and fine-tuning on seven downstream datasets. Specifically, zero/few-shot and fine-tuning results show that the model pre-trained on our corpus demonstrates a strong aspect or query-focused generation ability compared with the backbone model. Our dataset and pre-trained checkpoints are publicly available.
This work considers the problem of Open-world Entity Profiling, a sub-domain of Open-world Information Extraction (Open-world IE). Unlike the conventional closed-world IE, Open-world IE is considered a more general situation where entities and relations could be beyond a predefined ontology. We seek to develop a large language model (LLM) that can perform Open-world Entity Profiling with instruction tuning to extract desirable entity profiles characterized by (possibly fine-grained) natural language instructions. In particular, we construct INSTRUCTOPENWIKI, a substantial instruction-tuning dataset for Open-world Entity Profiling enriched with a comprehensive corpus, extensive annotations, and diverse instructions. We finetune pretrained BLOOM models on INSTRUCTOPENWIKI and obtain PIVOINE, an LLM for Open-world Entity Profiling with strong instruction-following capabilities. Our experiments demonstrate that PIVOINE significantly outperforms traditional methods and ChatGPT-based baselines, displaying impressive generalization capabilities on both unseen instructions and out-of-ontology cases. Consequently, PIVOINE emerges as a promising solution to tackle the open-world challenge of entity profiling.
Understanding sentence semantics requires an interpretation of the main information from a concrete context. To investigate how individual word contributes to sentence semantics, we propose a perturbation method for unsupervised semantic analysis. We next re-examine SOTA sentence embedding models’ ability to capture the main semantics of a sentence by developing a new evaluation metric to adapt sentence compression datasets for automatic evaluation. Results on three datasets show that unsupervised discourse relation recognition can serve as a general inference task that can more effectively aggregate information to essential contents than several SOTA unsupervised sentence embedding models.
We consider the problem of pretraining a two-stage open-domain question answering (QA) system (retriever + reader) with strong transfer capabilities. The key challenge is how to construct a large amount of high-quality question-answer-context triplets without task-specific annotations. Specifically, the triplets should align well with downstream tasks by: (i) covering a wide range of domains (for open-domain applications), (ii) linking a question to its semantically relevant context with supporting evidence (for training the retriever), and (iii) identifying the correct answer in the context (for training the reader). Previous pretraining approaches generally fall short of one or more of these requirements. In this work, we automatically construct a large-scale corpus that meets all three criteria by consulting millions of references cited within Wikipedia. The well-aligned pretraining signals benefit both the retriever and the reader significantly. Our pretrained retriever leads to 2%-10% absolute gains in top-20 accuracy. And with our pretrained reader, the entire system improves by up to 4% in exact match.
Word Sense Disambiguation (WSD) aims to automatically identify the exact meaning of one word according to its context. Existing supervised models struggle to make correct predictions on rare word senses due to limited training data and can only select the best definition sentence from one predefined word sense inventory (e.g., WordNet). To address the data sparsity problem and generalize the model to be independent of one predefined inventory, we propose a gloss alignment algorithm that can align definition sentences (glosses) with the same meaning from different sense inventories to collect rich lexical knowledge. We then train a model to identify semantic equivalence between a target word in context and one of its glosses using these aligned inventories, which exhibits strong transfer capability to many WSD tasks. Experiments on benchmark datasets show that the proposed method improves predictions on both frequent and rare word senses, outperforming prior work by 1.2% on the All-Words WSD Task and 4.3% on the Low-Shot WSD Task. Evaluation on WiC Task also indicates that our method can better capture word meanings in context.
We present a new information extraction system that can automatically construct temporal event graphs from a collection of news documents from multiple sources, multiple languages (English and Spanish for our experiment), and multiple data modalities (speech, text, image and video). The system advances state-of-the-art from two aspects: (1) extending from sentence-level event extraction to cross-document cross-lingual cross-media event extraction, coreference resolution and temporal event tracking; (2) using human curated event schema library to match and enhance the extraction output. We have made the dockerlized system publicly available for research purpose at GitHub, with a demo video.
We present the first comprehensive, open source multimedia knowledge extraction system that takes a massive stream of unstructured, heterogeneous multimedia data from various sources and languages as input, and creates a coherent, structured knowledge base, indexing entities, relations, and events, following a rich, fine-grained ontology. Our system, GAIA, enables seamless search of complex graph queries, and retrieves multimedia evidence including text, images and videos. GAIA achieves top performance at the recent NIST TAC SM-KBP2019 evaluation. The system is publicly available at GitHub and DockerHub, with a narrated video that documents the system.
We focus on multiple-choice question answering (QA) tasks in subject areas such as science, where we require both broad background knowledge and the facts from the given subject-area reference corpus. In this work, we explore simple yet effective methods for exploiting two sources of external knowledge for subject-area QA. The first enriches the original subject-area reference corpus with relevant text snippets extracted from an open-domain resource (i.e., Wikipedia) that cover potentially ambiguous concepts in the question and answer options. As in other QA research, the second method simply increases the amount of training data by appending additional in-domain subject-area instances. Experiments on three challenging multiple-choice science QA tasks (i.e., ARC-Easy, ARC-Challenge, and OpenBookQA) demonstrate the effectiveness of our methods: in comparison to the previous state-of-the-art, we obtain absolute gains in accuracy of up to 8.1%, 13.0%, and 12.8%, respectively. While we observe consistent gains when we introduce knowledge from Wikipedia, we find that employing additional QA training instances is not uniformly helpful: performance degrades when the added instances exhibit a higher level of difficulty than the original training data. As one of the first studies on exploiting unstructured external knowledge for subject-area QA, we hope our methods, observations, and discussion of the exposed limitations may shed light on further developments in the area.
Entities, which refer to distinct objects in the real world, can be viewed as language universals and used as effective signals to generate less ambiguous semantic representations and align multiple languages. We propose a novel method, CLEW, to generate cross-lingual data that is a mix of entities and contextual words based on Wikipedia. We replace each anchor link in the source language with its corresponding entity title in the target language if it exists, or in the source language otherwise. A cross-lingual joint entity and word embedding learned from this kind of data not only can disambiguate linkable entities but can also effectively represent unlinkable entities. Because this multilingual common space directly relates the semantics of contextual words in the source language to that of entities in the target language, we leverage it for unsupervised cross-lingual entity linking. Experimental results show that CLEW significantly advances the state-of-the-art: up to 3.1% absolute F-score gain for unsupervised cross-lingual entity linking. Moreover, it provides reliable alignment on both the word/entity level and the sentence level, and thus we use it to mine parallel sentences for all (302, 2) language pairs in Wikipedia.
We aim to automatically generate natural language descriptions about an input structured knowledge base (KB). We build our generation framework based on a pointer network which can copy facts from the input KB, and add two attention mechanisms: (i) slot-aware attention to capture the association between a slot type and its corresponding slot value; and (ii) a new table position self-attention to capture the inter-dependencies among related slots. For evaluation, besides standard metrics including BLEU, METEOR, and ROUGE, we propose a KB reconstruction based metric by extracting a KB from the generation output and comparing it with the input KB. We also create a new data set which includes 106,216 pairs of structured KBs and their corresponding natural language descriptions for two distinct entity types. Experiments show that our approach significantly outperforms state-of-the-art methods. The reconstructed KB achieves 68.8% - 72.6% F-score.
We demonstrate ELISA-EDL, a state-of-the-art re-trainable system to extract entity mentions from low-resource languages, link them to external English knowledge bases, and visualize locations related to disaster topics on a world heatmap. We make all of our data sets, resources and system training and testing APIs publicly available for research purpose.
Current supervised name tagging approaches are inadequate for most low-resource languages due to the lack of annotated data and actionable linguistic knowledge. All supervised learning methods (including deep neural networks (DNN)) are sensitive to noise and thus they are not quite portable without massive clean annotations. We found that the F-scores of DNN-based name taggers drop rapidly (20%-30%) when we replace clean manual annotations with noisy annotations in the training data. We propose a new solution to incorporate many non-traditional language universal resources that are readily available but rarely explored in the Natural Language Processing (NLP) community, such as the World Atlas of Linguistic Structure, CIA names, PanLex and survival guides. We acquire and encode various types of non-traditional linguistic resources into a DNN name tagger. Experiments on three low-resource languages show that feeding linguistic knowledge can make DNN significantly more robust to noise, achieving 8%-22% absolute F-score gains on name tagging without using any human annotation
The ambitious goal of this work is to develop a cross-lingual name tagging and linking framework for 282 languages that exist in Wikipedia. Given a document in any of these languages, our framework is able to identify name mentions, assign a coarse-grained or fine-grained type to each mention, and link it to an English Knowledge Base (KB) if it is linkable. We achieve this goal by performing a series of new KB mining methods: generating “silver-standard” annotations by transferring annotations from English to other languages through cross-lingual links and KB properties, refining annotations through self-training and topic selection, deriving language-specific morphology features from anchor links, and mining word translation pairs from cross-lingual links. Both name tagging and linking results for 282 languages are promising on Wikipedia data and on-Wikipedia data.
Annotation projection is a practical method to deal with the low resource problem in incident languages (IL) processing. Previous methods on annotation projection mainly relied on word alignment results without any training process, which led to noise propagation caused by word alignment errors. In this paper, we focus on the named entity recognition (NER) task and propose a weakly-supervised framework to project entity annotations from English to IL through bitexts. Instead of directly relying on word alignment results, this framework combines advantages of rule-based methods and deep learning methods by implementing two steps: First, generates a high-confidence entity annotation set on IL side with strict searching methods; Second, uses this high-confidence set to weakly supervise the model training. The model is finally used to accomplish the projecting process. Experimental results on two low-resource ILs show that the proposed method can generate better annotations projected from English-IL parallel corpora. The performance of IL name tagger can also be improved significantly by training on the newly projected IL annotation set.