Xiaozhe Ren
2023
CAME: Confidence-guided Adaptive Memory Efficient Optimization
Yang Luo
|
Xiaozhe Ren
|
Zangwei Zheng
|
Zhuo Jiang
|
Xin Jiang
|
Yang You
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Adaptive gradient methods, such as Adam and LAMB, have demonstrated excellent performance in the training of large language models. Nevertheless, the need for adaptivity requires maintaining second-moment estimates of the per-parameter gradients, which entails a high cost of extra memory overheads. To solve this problem, several memory-efficient optimizers (e.g., Adafactor) have been proposed to obtain a drastic reduction in auxiliary memory usage, but with a performance penalty. In this paper, we first study a confidence-guided strategy to reduce the instability of existing memory efficient optimizers. Based on this strategy, we propose CAME to simultaneously achieve two goals: fast convergence as in traditional adaptive methods, and low memory usage as in memory-efficient methods. Extensive experiments demonstrate the training stability and superior performance of CAME across various NLP tasks such as BERT and GPT-2 training. Notably, for BERT pre-training on the large batch size of 32,768, our proposed optimizer attains faster convergence and higher accuracy compared with the Adam optimizer. The implementation of CAME is publicly available.
2021
EfficientBERT: Progressively Searching Multilayer Perceptron via Warm-up Knowledge Distillation
Chenhe Dong
|
Guangrun Wang
|
Hang Xu
|
Jiefeng Peng
|
Xiaozhe Ren
|
Xiaodan Liang
Findings of the Association for Computational Linguistics: EMNLP 2021
Pre-trained language models have shown remarkable results on various NLP tasks. Nevertheless, due to their bulky size and slow inference speed, it is hard to deploy them on edge devices. In this paper, we have a critical insight that improving the feed-forward network (FFN) in BERT has a higher gain than improving the multi-head attention (MHA) since the computational cost of FFN is 2~3 times larger than MHA. Hence, to compact BERT, we are devoted to designing efficient FFN as opposed to previous works that pay attention to MHA. Since FFN comprises a multilayer perceptron (MLP) that is essential in BERT optimization, we further design a thorough search space towards an advanced MLP and perform a coarse-to-fine mechanism to search for an efficient BERT architecture. Moreover, to accelerate searching and enhance model transferability, we employ a novel warm-up knowledge distillation strategy at each search stage. Extensive experiments show our searched EfficientBERT is 6.9× smaller and 4.4× faster than BERTBASE, and has competitive performances on GLUE and SQuAD Benchmarks. Concretely, EfficientBERT attains a 77.7 average score on GLUE test, 0.7 higher than MobileBERTTINY, and achieves an 85.3/74.5 F1 score on SQuAD v1.1/v2.0 dev, 3.2/2.7 higher than TinyBERT4 even without data augmentation. The code is released at https://github.com/cheneydon/efficient-bert.
Search
Co-authors
- Chenhe Dong 1
- Guangrun Wang 1
- Hang Xu 1
- Jiefeng Peng 1
- Xiaodan Liang 1
- show all...