2024
pdf
bib
abs
Exploring Collaboration Mechanisms for LLM Agents: A Social Psychology View
Jintian Zhang
|
Xin Xu
|
Ningyu Zhang
|
Ruibo Liu
|
Bryan Hooi
|
Shumin Deng
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
As Natural Language Processing (NLP) systems are increasingly employed in intricate social environments, a pressing query emerges: *Can these NLP systems mirror human-esque collaborative intelligence, in a multi-agent society consisting of multiple large language models (LLMs)?* This paper probes the collaboration mechanisms among contemporary NLP systems by melding practical experiments with theoretical insights. We fabricate four unique ‘societies’ comprised of LLM agents, where each agent is characterized by a specific ‘trait’ (easy-going or overconfident) and engages in collaboration with a distinct ‘thinking pattern’ (debate or reflection). Through evaluating these multi-agent societies on three benchmark datasets, we discern that certain collaborative strategies not only outshine previous top-tier approaches but also optimize efficiency (using fewer API tokens). Moreover, our results further illustrate that LLM agents manifest human-like social behaviors, such as conformity and consensus reaching, mirroring foundational social psychology theories. In conclusion, we integrate insights from social psychology to contextualize the collaboration of LLM agents, inspiring further investigations into the collaboration mechanism for LLMs. We commit to sharing our code and datasets, hoping to catalyze further research in this promising avenue.
2023
pdf
bib
abs
Schema-adaptable Knowledge Graph Construction
Hongbin Ye
|
Honghao Gui
|
Xin Xu
|
Xi Chen
|
Huajun Chen
|
Ningyu Zhang
Findings of the Association for Computational Linguistics: EMNLP 2023
Conventional Knowledge Graph Construction (KGC) approaches typically follow the static information extraction paradigm with a closed set of pre-defined schema. As a result, such approaches fall short when applied to dynamic scenarios or domains, whereas a new type of knowledge emerges. This necessitates a system that can handle evolving schema automatically to extract information for KGC. To address this need, we propose a new task called schema-adaptable KGC, which aims to continually extract entity, relation, and event based on a dynamically changing schema graph without re-training. We first split and convert existing datasets based on three principles to build a benchmark, i.e., horizontal schema expansion, vertical schema expansion, and hybrid schema expansion; then investigate the schema-adaptable performance of several well-known approaches such as Text2Event, TANL, UIE and GPT-3.5. We further propose a simple yet effective baseline dubbed AdaKGC, which contains schema-enriched prefix instructor and schema-conditioned dynamic decoding to better handle evolving schema. Comprehensive experimental results illustrate that AdaKGC can outperform baselines but still have room for improvement. We hope the proposed work can deliver benefits to the community.
pdf
bib
abs
LAMBADA: Backward Chaining for Automated Reasoning in Natural Language
Mehran Kazemi
|
Najoung Kim
|
Deepti Bhatia
|
Xin Xu
|
Deepak Ramachandran
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Remarkable progress has been made on automated reasoning with natural text, by using Large Language Models (LLMs) and methods such as Chain-of-Thought prompting and Selection-Inference. These techniques search for proofs in the forward direction from axioms to the conclusion, which suffers from a combinatorial explosion of the search space, and thus high failure rates for problems requiring longer chains of reasoning. The classical automated reasoning literature has shown that reasoning in the backward direction (i.e. from intended conclusion to supporting axioms) is significantly more efficient at proof-finding. Importing this intuition into the LM setting, we develop a Backward Chaining algorithm, called LAMBADA, that decomposes reasoning into four sub-modules, that are simply implemented by few-shot prompted LLM inference. We show that LAMBADA achieves sizable accuracy boosts over state-of-the-art forward reasoning methods on two challenging logical reasoning datasets, particularly when deep and accurate proof chains are required.
pdf
bib
How to Unleash the Power of Large Language Models for Few-shot Relation Extraction?
Xin Xu
|
Yuqi Zhu
|
Xiaohan Wang
|
Ningyu Zhang
Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP)
2022
pdf
bib
abs
DeepKE: A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population
Ningyu Zhang
|
Xin Xu
|
Liankuan Tao
|
Haiyang Yu
|
Hongbin Ye
|
Shuofei Qiao
|
Xin Xie
|
Xiang Chen
|
Zhoubo Li
|
Lei Li
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
We present an open-source and extensible knowledge extraction toolkit DeepKE, supporting complicated low-resource, document-level and multimodal scenarios in the knowledge base population. DeepKE implements various information extraction tasks, including named entity recognition, relation extraction and attribute extraction. With a unified framework, DeepKE allows developers and researchers to customize datasets and models to extract information from unstructured data according to their requirements. Specifically, DeepKE not only provides various functional modules and model implementation for different tasks and scenarios but also organizes all components by consistent frameworks to maintain sufficient modularity and extensibility. We release the source code at GitHub in
https://github.com/zjunlp/DeepKE with Google Colab tutorials and comprehensive documents for beginners. Besides, we present an online system in
http://deepke.openkg.cn/EN/re_doc_show.html for real-time extraction of various tasks, and a demo video.
pdf
bib
abs
Towards Realistic Low-resource Relation Extraction: A Benchmark with Empirical Baseline Study
Xin Xu
|
Xiang Chen
|
Ningyu Zhang
|
Xin Xie
|
Xi Chen
|
Huajun Chen
Findings of the Association for Computational Linguistics: EMNLP 2022
This paper presents an empirical study to build relation extraction systems in low-resource settings. Based upon recent pre-trained language models, we comprehensively investigate three schemes to evaluate the performance in low-resource settings: (i) different types of prompt-based methods with few-shot labeled data; (ii) diverse balancing methods to address the long-tailed distribution issue; (iii) data augmentation technologies and self-training to generate more labeled in-domain data. We create a benchmark with 8 relation extraction (RE) datasets covering different languages, domains and contexts and perform extensive comparisons over the proposed schemes with combinations. Our experiments illustrate: (i) Though prompt-based tuning is beneficial in low-resource RE, there is still much potential for improvement, especially in extracting relations from cross-sentence contexts with multiple relational triples; (ii) Balancing methods are not always helpful for RE with long-tailed distribution; (iii) Data augmentation complements existing baselines and can bring much performance gain, while self-training may not consistently achieve advancement to low-resource RE. Code and datasets are in https://github.com/zjunlp/LREBench.