Xinyuan Lu


2023

pdf bib
Fact-Checking Complex Claims with Program-Guided Reasoning
Liangming Pan | Xiaobao Wu | Xinyuan Lu | Anh Tuan Luu | William Yang Wang | Min-Yen Kan | Preslav Nakov
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Fact-checking real-world claims often requires collecting multiple pieces of evidence and applying complex multi-step reasoning. In this paper, we present Program-Guided Fact-Checking (ProgramFC), a novel fact-checking model that decomposes complex claims into simpler sub-tasks that can be solved using a shared library of specialized functions. We first leverage the in-context learning ability of large language models to generate reasoning programs to guide the verification process. Afterward, we execute the program by delegating each sub-task to the corresponding sub-task handler. This process makes our model both explanatory and data-efficient, providing clear explanations of its reasoning process and requiring minimal training data. We evaluate ProgramFC on two challenging fact-checking datasets and show that it outperforms seven fact-checking baselines across different settings of evidence availability, with explicit output programs that benefit human debugging. Our codes and data are publicly available at https://github.com/mbzuai-nlp/ProgramFC.

pdf bib
SCITAB: A Challenging Benchmark for Compositional Reasoning and Claim Verification on Scientific Tables
Xinyuan Lu | Liangming Pan | Qian Liu | Preslav Nakov | Min-Yen Kan
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Current scientific fact-checking benchmarks exhibit several shortcomings, such as biases arising from crowd-sourced claims and an over-reliance on text-based evidence. We present SCITAB, a challenging evaluation dataset consisting of 1.2K expert-verified scientific claims that 1) originate from authentic scientific publications and 2) require compositional reasoning for verification. The claims are paired with evidence-containing scientific tables annotated with labels. Through extensive evaluations, we demonstrate that SCITAB poses a significant challenge to state-of-the-art models, including table-based pretraining models and large language models. All models except GPT-4 achieved performance barely above random guessing. Popular prompting techniques, such as Chain-of-Thought, do not achieve much performance gains on SCITAB. Our analysis uncovers several unique challenges posed by SCITAB, including table grounding, claim ambiguity, and compositional reasoning. Our codes and data are publicly available at https://github.com/XinyuanLu00/SciTab.

pdf bib
QACheck: A Demonstration System for Question-Guided Multi-Hop Fact-Checking
Liangming Pan | Xinyuan Lu | Min-Yen Kan | Preslav Nakov
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Fact-checking real-world claims often requires intricate, multi-step reasoning due to the absence of direct evidence to support or refute them. However, existing fact-checking systems often lack transparency in their decision-making, making it challenging for users to comprehend their reasoning process. To address this, we propose the Question-guided Multi-hop Fact-Checking (QACheck) system, which guides the model’s reasoning process by asking a series of questions critical for verifying a claim. QACheck has five key modules: a claim verifier, a question generator, a question-answering module, a QA validator, and a reasoner. Users can input a claim into QACheck, which then predicts its veracity and provides a comprehensive report detailing its reasoning process, guided by a sequence of (question, answer) pairs. QACheck also provides the source of evidence supporting each question, fostering a transparent, explainable, and user-friendly fact-checking process.