Hierarchical topic modeling, which can mine implicit semantics in the corpus and automatically construct topic hierarchical relationships, has received considerable attention recently. However, the current hierarchical topic models are mainly based on Euclidean space, which cannot well retain the implicit hierarchical semantic information in the corpus, leading to irrational structure of the generated topics. On the other hand, the existing Generative Adversarial Network (GAN) based neural topic models perform satisfactorily, but they remain constrained by pattern collapse due to the discontinuity of latent space. To solve the above problems, with the hypothesis of hyperbolic space, we propose a novel GAN-based hierarchical topic model to mine high-quality topics by introducing contrastive learning to capture information from documents. Furthermore, the distinct tree-like property of hyperbolic space preserves the implicit hierarchical semantics of documents in topic embeddings, which are projected into the hyperbolic space. Finally, we use a multi-head self-attention mechanism to learn implicit hierarchical semantics of topics and mine topic structure information. Experiments on real-world corpora demonstrate the remarkable performance of our model on topic coherence and topic diversity, as well as the rationality of the topic hierarchy.
This paper focuses on answering subjective questions about products. Different from the factoid question with a single answer span, this subjective one involves multiple viewpoints. For example, the question of ‘how the phone’s battery is?’ not only involves facts of battery capacity but also contains users’ opinions on the battery’s pros and cons. A good answer should be able to integrate these heterogeneous and even inconsistent viewpoints, which is formalized as a subjective induction QA task. For this task, the data distributions are often imbalanced across different product domains. It is hard for traditional methods to work well without considering the shift of domain patterns. To address this problem, we propose a novel domain-adaptive model. Concretely, for each sample in the source and target domain, we first retrieve answer-related knowledge and represent them independently. To facilitate knowledge transferring, we then disentangle the representations into domain-invariant and domain-specific latent factors. Moreover, we develop an adversarial discriminator with contrastive learning to reduce the impact of out-of-domain bias. Based on learned latent vectors in a target domain, we yield multi-perspective summaries as inductive answers. Experiments on popular datasets show the effectiveness of our method.
Multi-hop QA requires reasoning over multiple supporting facts to answer the question. However, the existing QA models always rely on shortcuts, e.g., providing the true answer by only one fact, rather than multi-hop reasoning, which is referred as disconnected reasoning problem. To alleviate this issue, we propose a novel counterfactual multihop QA, a causal-effect approach that enables to reduce the disconnected reasoning. It builds upon explicitly modeling of causality: 1) the direct causal effects of disconnected reasoning and 2) the causal effect of true multi-hop reasoning from the total causal effect. With the causal graph, a counterfactual inference is proposed to disentangle the disconnected reasoning from the total causal effect, which provides us a new perspective and technology to learn a QA model that exploits the true multi-hop reasoning instead of shortcuts. Extensive experiments have been conducted on the benchmark HotpotQA dataset, which demonstrate that the proposed method can achieve notable improvement on reducing disconnected reasoning. For example, our method achieves 5.8% higher points of its Supps score on HotpotQA through true multihop reasoning. The code is available at https://github.com/guowzh/CFMQA.
Hierarchical topic models, which can extract semantically meaningful topics from a textcorpus in an unsupervised manner and automatically organise them into a topic hierarchy, have been widely used to discover the underlying semantic structure of documents. However, the existing models often assume in the prior that the topic hierarchy is a tree structure, ignoring symmetrical dependenciesbetween topics at the same level. Moreover, the sparsity of text data often complicate the analysis. To address these issues, we propose NSEM-GMHTM as a deep topic model, witha Gaussian mixture prior distribution to improve the model’s ability to adapt to sparse data, which explicitly models hierarchical and symmetric relations between topics through the dependency matrices and nonlinear structural equations. Experiments on widely used datasets show that our NSEM-GMHTM generates more coherent topics and a more rational topic structure when compared to state-of-theart baselines. Our code is available at https: //github.com/nbnbhwyy/NSEM-GMHTM.
The out-of-vocabulary (OOV) words are difficult to represent while critical to the performance of embedding-based downstream models. Prior OOV word embedding learning methods failed to model complex word formation well. In this paper, we propose a novel graph-based relation mining method, namely GRM, for OOV word embedding learning. We first build a Word Relationship Graph (WRG) based on word formation and associate OOV words with their semantically relevant words, which can mine the relational information inside word structures. Subsequently, our GRM can infer high-quality embeddings for OOV words through passing and aggregating semantic attributes and relational information in the WRG, regardless of contextual richness. Extensive experiments demonstrate that our model significantly outperforms state-of-the-art baselines on both intrinsic and downstream tasks when faced with OOV words.
We identify the robust overfitting issue for pre-trained language models by showing that the robust test loss increases as the epoch grows. Through comprehensive exploration of the robust loss on the training set, we attribute robust overfitting to the model’s memorization of the adversarial training data. We attempt to mitigate robust overfitting by combining regularization methods with adversarial training. Following the philosophy that prevents the model from memorizing the adversarial data, we find that flooding, a regularization method with loss scaling, can mitigate robust overfitting for pre-trained language models. Eventually, we investigate the effect of flooding levels and evaluate the models’ adversarial robustness under textual attacks. Extensive experiments demonstrate that our methods can mitigate robust overfitting upon three top adversarial training methods and further promote adversarial robustness.
Neural topic models have been widely used in discovering the latent semantics from a corpus. Recently, there are several researches on hierarchical neural topic models since the relationships among topics are valuable for data analysis and exploration. However, the existing hierarchical neural topic models are limited to generate a single topic tree. In this study, we present a nonparametric forest-structured neural topic model by firstly applying the self-attention mechanism to capture parent-child topic relationships, and then build a sparse directed acyclic graph to form a topic forest. Experiments indicate that our model can automatically learn a forest-structured topic hierarchy with indefinite numbers of trees and leaves, and significantly outperforms the baseline models on topic hierarchical rationality and affinity.
Topic modeling has been widely used for discovering the latent semantic structure of documents, but most existing methods learn topics with a flat structure. Although probabilistic models can generate topic hierarchies by introducing nonparametric priors like Chinese restaurant process, such methods have data scalability issues. In this study, we develop a tree-structured topic model by leveraging nonparametric neural variational inference. Particularly, the latent components of the stick-breaking process are first learned for each document, then the affiliations of latent components are modeled by the dependency matrices between network layers. Utilizing this network structure, we can efficiently extract a tree-structured topic hierarchy with reasonable structure, low redundancy, and adaptable widths. Experiments on real-world datasets validate the effectiveness of our method.
Opinion target extraction and opinion term extraction are two fundamental tasks in Aspect Based Sentiment Analysis (ABSA). Many recent works on ABSA focus on Target-oriented Opinion Words (or Terms) Extraction (TOWE), which aims at extracting the corresponding opinion words for a given opinion target. TOWE can be further applied to Aspect-Opinion Pair Extraction (AOPE) which aims at extracting aspects (i.e., opinion targets) and opinion terms in pairs. In this paper, we propose Target-Specified sequence labeling with Multi-head Self-Attention (TSMSA) for TOWE, in which any pre-trained language model with multi-head self-attention can be integrated conveniently. As a case study, we also develop a Multi-Task structure named MT-TSMSA for AOPE by combining our TSMSA with an aspect and opinion term extraction module. Experimental results indicate that TSMSA outperforms the benchmark methods on TOWE significantly; meanwhile, the performance of MT-TSMSA is similar or even better than state-of-the-art AOPE baseline models.
Mixed counting models that use the negative binomial distribution as the prior can well model over-dispersed and hierarchically dependent random variables; thus they have attracted much attention in mining dispersed document topics. However, the existing parameter inference method like Monte Carlo sampling is quite time-consuming. In this paper, we propose two efficient neural mixed counting models, i.e., the Negative Binomial-Neural Topic Model (NB-NTM) and the Gamma Negative Binomial-Neural Topic Model (GNB-NTM) for dispersed topic discovery. Neural variational inference algorithms are developed to infer model parameters by using the reparameterization of Gamma distribution and the Gaussian approximation of Poisson distribution. Experiments on real-world datasets indicate that our models outperform state-of-the-art baseline models in terms of perplexity and topic coherence. The results also validate that both NB-NTM and GNB-NTM can produce explainable intermediate variables by generating dispersed proportions of document topics.
Label-specific topics can be widely used for supporting personality psychology, aspect-level sentiment analysis, and cross-domain sentiment classification. To generate label-specific topics, several supervised topic models which adopt likelihood-driven objective functions have been proposed. However, it is hard for them to get a precise estimation on both topic discovery and supervised learning. In this study, we propose a supervised topic model based on the Siamese network, which can trade off label-specific word distributions with document-specific label distributions in a uniform framework. Experiments on real-world datasets validate that our model performs competitive in topic discovery quantitatively and qualitatively. Furthermore, the proposed model can effectively predict categorical or real-valued labels for new documents by generating word embeddings from a label-specific topical space.
This paper focuses on the task of noisy label aggregation in social media, where users with different social or culture backgrounds may annotate invalid or malicious tags for documents. To aggregate noisy labels at a small cost, a network framework is proposed by calculating the matching degree of a document’s topics and the annotators’ meta-data. Unlike using the back-propagation algorithm, a probabilistic inference approach is adopted to estimate network parameters. Finally, a new simulation method is designed for validating the effectiveness of the proposed framework in aggregating noisy labels.