Yaojie Lu


2024

pdf bib
XMC-Agent : Dynamic Navigation over Scalable Hierarchical Index for Incremental Extreme Multi-label Classification
Yanjiang Liu | Tianyun Zhong | Yaojie Lu | Hongyu Lin | Ben He | Shuheng Zhou | Huijia Zhu | Weiqiang Wang | Zhongyi Liu | Xianpei Han | Le Sun
Findings of the Association for Computational Linguistics ACL 2024

The eXtreme Multi-label Classification (XMC) aims at accurately assigning large-scale labels to instances, and is challenging for learning, managing, and predicting over the large-scale and rapidly growing set of labels. Traditional XMC methods, like one-vs-all and tree-based methods struggle with the growing set of labels due to their static label assumptions, and embedding-based methods struggle with the complex mapping relationships due to their late-interaction paradigm. In this paper, we propose a large language model (LLM) powered agent framework for extreme multi-label classification – XMC-Agent, which can effectively learn, manage and predict the extremely large and dynamically increasing set of labels. Specifically, XMC-Agent models the extreme multi-label classification task as a dynamic navigation problem, employing a scalable hierarchical label index to effectively manage the unified label space. Additionally, we propose two algorithms to enhance the dynamic navigation capabilities of XMC-Agent: a self-construction algorithm for building the scalable hierarchical index, and an iterative feedback learning algorithm for adjusting the agent to specific tasks. Experiments show that XMC-Agentachieves the state-of-the-art performance on three standard datasets.

pdf bib
REInstruct: Building Instruction Data from Unlabeled Corpus
Shu Chen | Xinyan Guan | Yaojie Lu | Hongyu Lin | Xianpei Han | Le Sun
Findings of the Association for Computational Linguistics ACL 2024

Manually annotating instruction data for large language models is difficult, costly, and hard to scale. Meanwhile, current automatic annotation methods typically rely on distilling synthetic data from proprietary LLMs, which not only limits the upper bound of the quality of the instruction data but also raises potential copyright issues. In this paper, we propose REInstruct, a simple and scalable method to automatically build instruction data from an unlabeled corpus without heavy reliance on proprietary LLMs and human annotation.Specifically, REInstruct first selects a subset of unlabeled texts that potentially contain well-structured helpful and insightful content and then generates instructions for these texts. To generate accurate and relevant responses for effective and robust training, REInstruct further proposes a rewriting-based approach to improve the quality of the generated instruction data. By training Llama-7b on a combination of 3k seed data and 32k synthetic data from REInstruct, fine-tuned model achieves a 65.41% win rate on AlpacaEval leaderboard against text-davinci-003, outperforming other open-source, non-distilled instruction data construction methods. The code is publicly available at https://github.com/cs32963/REInstruct.

pdf bib
SoFA: Shielded On-the-fly Alignment via Priority Rule Following
Xinyu Lu | Bowen Yu | Yaojie Lu | Hongyu Lin | Haiyang Yu | Le Sun | Xianpei Han | Yongbin Li
Findings of the Association for Computational Linguistics ACL 2024

The alignment problem in Large Language Models (LLMs) involves adapting them to the broad spectrum of human values. This requirement challenges existing alignment methods due to diversity of preferences and regulatory standards. This paper introduces a novel alignment paradigm, priority rule following, which defines rules as the primary control mechanism in each dialog, prioritizing them over user instructions. Our preliminary analysis reveals that even the advanced LLMs, such as GPT-4, exhibit shortcomings in understanding and prioritizing the rules. Therefore, we present PriorityDistill, a semi-automated approach for distilling priority following signals from LLM simulations to ensure robust rule integration and adherence. Our experiments show that this method not only effectively minimizes misalignments utilizing only one general rule but also adapts smoothly to various unseen rules, ensuring they are shielded from hijacking and that the model responds appropriately.

pdf bib
Debiasing In-Context Learning by Instructing LLMs How to Follow Demonstrations
Lvxue Li | Jiaqi Chen | Xinyu Lu | Yaojie Lu | Hongyu Lin | Shuheng Zhou | Huijia Zhu | Weiqiang Wang | Zhongyi Liu | Xianpei Han | Le Sun
Findings of the Association for Computational Linguistics ACL 2024

In-context learning(ICL) has gained considerable attention due to its data efficiency and task adaptability. Unfortunately, ICL suffers from the demonstration bias, i.e., its performance and robustness are severely affected by the selection and ordering of demonstrations. In this paper, we identify that such demonstration bias may primarily stem from the semantic ambiguity induced by demonstrations, i.e., a demonstration may indicate multiple input-to-label mappings and its mapping can be interpreted differently in different contexts by LLMs. Such semantic ambiguity disrupts task comprehension during ICL and results in performance fluctuations. To resolve the semantic ambiguity problem, this paper further proposes two de-biasing strategies to mitigate demonstration bias in in-context learning. Experiments on six datasets show that our methods can effectively alleviate demonstration bias and significantly improve task performance.

pdf bib
Rule or Story, Which is a Better Commonsense Expression for Talking with Large Language Models?
Ning Bian | Xianpei Han | Hongyu Lin | Yaojie Lu | Ben He | Le Sun
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Building machines with commonsense has been a longstanding challenge in NLP due to the reporting bias of commonsense rules and the exposure bias of rule-based commonsense reasoning. In contrast, humans convey and pass down commonsense implicitly through stories. This paper investigates the inherent commonsense ability of large language models (LLMs) expressed through storytelling. We systematically investigate and compare stories and rules for retrieving and leveraging commonsense in LLMs. Experimental results on 28 commonsense QA datasets show that stories outperform rules as the expression for retrieving commonsense from LLMs, exhibiting higher generation confidence and commonsense accuracy. Moreover, stories are the more effective commonsense expression for answering questions regarding daily events, while rules are more effective for scientific questions. This aligns with the reporting bias of commonsense in text corpora. We further show that the correctness and relevance of commonsense stories can be further improved via iterative self-supervised fine-tuning. These findings emphasize the importance of using appropriate language to express, retrieve, and leverage commonsense for LLMs, highlighting a promising direction for better exploiting their commonsense abilities.

pdf bib
Open Grounded Planning: Challenges and Benchmark Construction
Shiguang Guo | Ziliang Deng | Hongyu Lin | Yaojie Lu | Xianpei Han | Le Sun
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The emergence of large language models (LLMs) has increasingly drawn attention to the use of LLMs for human-like planning. Existing work on LLM-based planning either focuses on leveraging the inherent language generation capabilities of LLMs to produce free-style plans, or employs reinforcement learning approaches to learn decision-making for a limited set of actions within restricted environments. However, both approaches exhibit significant discrepancies from the open and executable requirements in real-world planning. In this paper, we propose a new planning task–open grounded planning. The primary objective of open grounded planning is to ask the model to generate an executable plan based on a variable action set, thereby ensuring the executability of the produced plan. To this end, we establishes a benchmark for open grounded planning spanning a wide range of domains. Then we test current state-of-the-art LLMs along with five planning approaches, revealing that existing LLMs and methods still struggle to address the challenges posed by grounded planning in open domains. The outcomes of this paper define and establish a foundational dataset for open grounded planning, and shed light on the potential challenges and future directions of LLM-based planning.

pdf bib
Beyond Full Fine-tuning: Harnessing the Power of LoRA for Multi-Task Instruction Tuning
Chunlei Xin | Yaojie Lu | Hongyu Lin | Shuheng Zhou | Huijia Zhu | Weiqiang Wang | Zhongyi Liu | Xianpei Han | Le Sun
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Low-Rank Adaptation (LoRA) is a widespread parameter-efficient fine-tuning algorithm for large-scale language models. It has been commonly accepted that LoRA mostly achieves promising results in single-task, low-resource settings, and struggles to handle multi-task instruction tuning scenarios. In this paper, we conduct a systematic study of LoRA on diverse tasks and rich resources with different learning capacities, examining its performance on seen tasks during training and its cross-task generalization on unseen tasks. Our findings challenge the prevalent assumption that the limited learning capacity will inevitably result in performance decline. In fact, our study reveals that when configured with an appropriate rank, LoRA can achieve remarkable performance in high-resource and multi-task scenarios, even comparable to that achieved through full fine-tuning. It turns out that the constrained learning capacity encourages LoRA to prioritize conforming to instruction requirements rather than memorizing specialized features of particular tasks or instances. This study reveals the underlying connection between learning capacity and generalization capabilities for robust parameter-efficient fine-tuning, highlighting a promising direction for the broader application of LoRA across various tasks and settings.

pdf bib
ChatGPT Is a Knowledgeable but Inexperienced Solver: An Investigation of Commonsense Problem in Large Language Models
Ning Bian | Xianpei Han | Le Sun | Hongyu Lin | Yaojie Lu | Ben He | Shanshan Jiang | Bin Dong
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Large language models (LLMs) have made significant progress in NLP. However, their ability to memorize, represent, and leverage commonsense knowledge has been a well-known pain point. In this paper, we specifically focus on ChatGPT, a widely used and easily accessible LLM, and ask the following questions: (1) Can ChatGPT effectively answer commonsense questions? (2) Is ChatGPT aware of the underlying commonsense knowledge for answering a specific question? (3) Is ChatGPT knowledgeable in commonsense? (4) Can ChatGPT effectively leverage commonsense for answering questions? We conduct a series of experiments on 11 datasets to evaluate ChatGPT’s commonsense abilities, including answering commonsense questions, identifying necessary knowledge, generating knowledge descriptions, and using knowledge descriptions to answer questions again. Experimental results show that: (1) ChatGPT can achieve good QA accuracies in commonsense tasks, while still struggling with certain domains of datasets. (2) ChatGPT is knowledgeable, and can accurately generate most of the commonsense knowledge using knowledge prompts. (3) Despite its knowledge, ChatGPT is an inexperienced commonsense problem solver, which cannot precisely identify the needed commonsense for answering a specific question. These findings raise the need to explore improved mechanisms for effectively incorporating commonsense into LLMs like ChatGPT, such as better instruction following and commonsense guidance.

pdf bib
Executing Natural Language-Described Algorithms with Large Language Models: An Investigation
Xin Zheng | Qiming Zhu | Hongyu Lin | Yaojie Lu | Xianpei Han | Le Sun
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Executing computer programs described in natural language has long been a pursuit of computer science. With the advent of enhanced natural language understanding capabilities exhibited by large language models (LLMs), the path toward this goal has been illuminated. In this paper, we seek to examine the capacity of present-day LLMs to comprehend and execute algorithms outlined in natural language. We established an algorithm test set sourced from Introduction to Algorithm, a well-known textbook that contains many representative widely-used algorithms. To systematically assess LLMs’ code execution abilities, we selected 30 algorithms, generated 300 random-sampled instances in total, and evaluated whether popular LLMs can understand and execute these algorithms. Our findings reveal that LLMs, notably GPT-4, can effectively execute programs described in natural language, as long as no heavy numeric computation is involved. We believe our findings contribute to evaluating LLMs’ code execution abilities and would encourage further investigation and application for the computation power of LLMs.

pdf bib
Few-shot Named Entity Recognition via Superposition Concept Discrimination
Jiawei Chen | Hongyu Lin | Xianpei Han | Yaojie Lu | Shanshan Jiang | Bin Dong | Le Sun
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Few-shot NER aims to identify entities of target types with only limited number of illustrative instances. Unfortunately, few-shot NER is severely challenged by the intrinsic precise generalization problem, i.e., it is hard to accurately determine the desired target type due to the ambiguity stemming from information deficiency. In this paper, we propose Superposition Concept Discriminator (SuperCD), which resolves the above challenge via an active learning paradigm. Specifically, a concept extractor is first introduced to identify superposition concepts from illustrative instances, with each concept corresponding to a possible generalization boundary. Then a superposition instance retriever is applied to retrieve corresponding instances of these superposition concepts from large-scale text corpus. Finally, annotators are asked to annotate the retrieved instances and these annotated instances together with original illustrative instances are used to learn FS-NER models. To this end, we learn a universal concept extractor and superposition instance retriever using a large-scale openly available knowledge bases. Experiments show that SuperCD can effectively identify superposition concepts from illustrative instances, retrieve superposition instances from large-scale corpus, and significantly improve the few-shot NER performance with minimal additional efforts.

pdf bib
Meta-Cognitive Analysis: Evaluating Declarative and Procedural Knowledge in Datasets and Large Language Models
Zhuoqun Li | Hongyu Lin | Yaojie Lu | Hao Xiang | Xianpei Han | Le Sun
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Declarative knowledge and procedural knowledge are two key parts in meta-cognitive theory, and these two hold significant importance in pre-training and inference of LLMs. However, a comprehensive analysis comparing these two types of knowledge is lacking, primarily due to challenges in definition, probing and quantitative assessment. In this paper, we explore from a new perspective by providing ground-truth knowledge for LLMs and evaluating the effective score. Through extensive experiments with widely-used datasets and models, we get conclusions: (1) In most tasks, benefits from declarative knowledge are greater than those from procedural knowledge. (2) Profits of procedural knowledge are larger than declarative knowledge only in reasoning tasks with simple logic. (3) As pre-training progresses and size increases, model ability to utilize both kinds of knowledge significantly improves, but in different speed. We do detailed analysis for the findings and this can provide primary guidance for evaluation and enhancement of large language models.

2023

pdf bib
Learning In-context Learning for Named Entity Recognition
Jiawei Chen | Yaojie Lu | Hongyu Lin | Jie Lou | Wei Jia | Dai Dai | Hua Wu | Boxi Cao | Xianpei Han | Le Sun
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Named entity recognition in real-world applications suffers from the diversity of entity types, the emergence of new entity types, and the lack of high-quality annotations. To address the above problems, this paper proposes an in-context learning-based NER approach, which can effectively inject in-context NER ability into PLMs and recognize entities of novel types on-the-fly using only a few demonstrative instances. Specifically, we model PLMs as a meta-function Lambda_instruction, demonstrations, text.M, and a new entity extractor can be implicitly constructed by applying new instruction and demonstrations to PLMs, i.e., (Lambda . M) (instruction, demonstrations) ->F where F will be a new entity extractor F: text -> entities. To inject the above in-context NER ability into PLMs, we propose a meta-function pre-training algorithm, which pre-trains PLMs by comparing the (instruction, demonstration)-initialized extractor with a surrogate golden extractor. Experimental results on 4 few-shot NER datasets show that our method can effectively inject in-context NER ability into PLMs and significantly outperforms the PLMs+fine-tuning counterparts.

2022

pdf bib
Unified Structure Generation for Universal Information Extraction
Yaojie Lu | Qing Liu | Dai Dai | Xinyan Xiao | Hongyu Lin | Xianpei Han | Le Sun | Hua Wu
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Information extraction suffers from its varying targets, heterogeneous structures, and demand-specific schemas. In this paper, we propose a unified text-to-structure generation framework, namely UIE, which can universally model different IE tasks, adaptively generate targeted structures, and collaboratively learn general IE abilities from different knowledge sources. Specifically, UIE uniformly encodes different extraction structures via a structured extraction language, adaptively generates target extractions via a schema-based prompt mechanism – structural schema instructor, and captures the common IE abilities via a large-scale pretrained text-to-structure model. Experiments show that UIE achieved the state-of-the-art performance on 4 IE tasks, 13 datasets, and on all supervised, low-resource, and few-shot settings for a wide range of entity, relation, event and sentiment extraction tasks and their unification. These results verified the effectiveness, universality, and transferability of UIE.

pdf bib
ISCAS at SemEval-2022 Task 10: An Extraction-Validation Pipeline for Structured Sentiment Analysis
Xinyu Lu | Mengjie Ren | Yaojie Lu | Hongyu Lin
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

ISCAS participated in both sub-tasks in SemEval-2022 Task 10: Structured Sentiment competition. We design an extraction-validation pipeline architecture to tackle both monolingual and cross-lingual sub-tasks. Experimental results show the multilingual effectiveness and cross-lingual robustness of our system. Our system is openly released on: https://github.com/luxinyu1/SemEval2022-Task10/.

2021

pdf bib
From Discourse to Narrative: Knowledge Projection for Event Relation Extraction
Jialong Tang | Hongyu Lin | Meng Liao | Yaojie Lu | Xianpei Han | Le Sun | Weijian Xie | Jin Xu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Current event-centric knowledge graphs highly rely on explicit connectives to mine relations between events. Unfortunately, due to the sparsity of connectives, these methods severely undermine the coverage of EventKGs. The lack of high-quality labelled corpora further exacerbates that problem. In this paper, we propose a knowledge projection paradigm for event relation extraction: projecting discourse knowledge to narratives by exploiting the commonalities between them. Specifically, we propose Multi-tier Knowledge Projection Network (MKPNet), which can leverage multi-tier discourse knowledge effectively for event relation extraction. In this way, the labelled data requirement is significantly reduced, and implicit event relations can be effectively extracted. Intrinsic experimental results show that MKPNet achieves the new state-of-the-art performance and extrinsic experimental results verify the value of the extracted event relations.

pdf bib
Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction
Yaojie Lu | Hongyu Lin | Jin Xu | Xianpei Han | Jialong Tang | Annan Li | Le Sun | Meng Liao | Shaoyi Chen
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Event extraction is challenging due to the complex structure of event records and the semantic gap between text and event. Traditional methods usually extract event records by decomposing the complex structure prediction task into multiple subtasks. In this paper, we propose Text2Event, a sequence-to-structure generation paradigm that can directly extract events from the text in an end-to-end manner. Specifically, we design a sequence-to-structure network for unified event extraction, a constrained decoding algorithm for event knowledge injection during inference, and a curriculum learning algorithm for efficient model learning. Experimental results show that, by uniformly modeling all tasks in a single model and universally predicting different labels, our method can achieve competitive performance using only record-level annotations in both supervised learning and transfer learning settings.

2020

pdf bib
ISCAS at SemEval-2020 Task 5: Pre-trained Transformers for Counterfactual Statement Modeling
Yaojie Lu | Annan Li | Hongyu Lin | Xianpei Han | Le Sun
Proceedings of the Fourteenth Workshop on Semantic Evaluation

ISCAS participated in two subtasks of SemEval 2020 Task 5: detecting counterfactual statements and detecting antecedent and consequence. This paper describes our system which is based on pretrained transformers. For the first subtask, we train several transformer-based classifiers for detecting counterfactual statements. For the second subtask, we formulate antecedent and consequence extraction as a query-based question answering problem. The two subsystems both achieved third place in the evaluation. Our system is openly released at https://github.com/casnlu/ISCASSemEval2020Task5.

pdf bib
Syntactic and Semantic-driven Learning for Open Information Extraction
Jialong Tang | Yaojie Lu | Hongyu Lin | Xianpei Han | Le Sun | Xinyan Xiao | Hua Wu
Findings of the Association for Computational Linguistics: EMNLP 2020

One of the biggest bottlenecks in building accurate, high coverage neural open IE systems is the need for large labelled corpora. The diversity of open domain corpora and the variety of natural language expressions further exacerbate this problem. In this paper, we propose a syntactic and semantic-driven learning approach, which can learn neural open IE models without any human-labelled data by leveraging syntactic and semantic knowledge as noisier, higher-level supervision. Specifically, we first employ syntactic patterns as data labelling functions and pretrain a base model using the generated labels. Then we propose a syntactic and semantic-driven reinforcement learning algorithm, which can effectively generalize the base model to open situations with high accuracy. Experimental results show that our approach significantly outperforms the supervised counterparts, and can even achieve competitive performance to supervised state-of-the-art (SoA) model.

pdf bib
A Rigorous Study on Named Entity Recognition: Can Fine-tuning Pretrained Model Lead to the Promised Land?
Hongyu Lin | Yaojie Lu | Jialong Tang | Xianpei Han | Le Sun | Zhicheng Wei | Nicholas Jing Yuan
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Fine-tuning pretrained model has achieved promising performance on standard NER benchmarks. Generally, these benchmarks are blessed with strong name regularity, high mention coverage and sufficient context diversity. Unfortunately, when scaling NER to open situations, these advantages may no longer exist. And therefore it raises a critical question of whether previous creditable approaches can still work well when facing these challenges. As there is no currently available dataset to investigate this problem, this paper proposes to conduct randomization test on standard benchmarks. Specifically, we erase name regularity, mention coverage and context diversity respectively from the benchmarks, in order to explore their impact on the generalization ability of models. To further verify our conclusions, we also construct a new open NER dataset that focuses on entity types with weaker name regularity and lower mention coverage to verify our conclusion. From both randomization test and empirical experiments, we draw the conclusions that 1) name regularity is critical for the models to generalize to unseen mentions; 2) high mention coverage may undermine the model generalization ability and 3) context patterns may not require enormous data to capture when using pretrained encoders.

2019

pdf bib
Distilling Discrimination and Generalization Knowledge for Event Detection via Delta-Representation Learning
Yaojie Lu | Hongyu Lin | Xianpei Han | Le Sun
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Event detection systems rely on discrimination knowledge to distinguish ambiguous trigger words and generalization knowledge to detect unseen/sparse trigger words. Current neural event detection approaches focus on trigger-centric representations, which work well on distilling discrimination knowledge, but poorly on learning generalization knowledge. To address this problem, this paper proposes a Delta-learning approach to distill discrimination and generalization knowledge by effectively decoupling, incrementally learning and adaptively fusing event representation. Experiments show that our method significantly outperforms previous approaches on unseen/sparse trigger words, and achieves state-of-the-art performance on both ACE2005 and KBP2017 datasets.

pdf bib
Sequence-to-Nuggets: Nested Entity Mention Detection via Anchor-Region Networks
Hongyu Lin | Yaojie Lu | Xianpei Han | Le Sun
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Sequential labeling-based NER approaches restrict each word belonging to at most one entity mention, which will face a serious problem when recognizing nested entity mentions. In this paper, we propose to resolve this problem by modeling and leveraging the head-driven phrase structures of entity mentions, i.e., although a mention can nest other mentions, they will not share the same head word. Specifically, we propose Anchor-Region Networks (ARNs), a sequence-to-nuggets architecture for nested mention detection. ARNs first identify anchor words (i.e., possible head words) of all mentions, and then recognize the mention boundaries for each anchor word by exploiting regular phrase structures. Furthermore, we also design Bag Loss, an objective function which can train ARNs in an end-to-end manner without using any anchor word annotation. Experiments show that ARNs achieve the state-of-the-art performance on three standard nested entity mention detection benchmarks.

pdf bib
Cost-sensitive Regularization for Label Confusion-aware Event Detection
Hongyu Lin | Yaojie Lu | Xianpei Han | Le Sun
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

In supervised event detection, most of the mislabeling occurs between a small number of confusing type pairs, including trigger-NIL pairs and sibling sub-types of the same coarse type. To address this label confusion problem, this paper proposes cost-sensitive regularization, which can force the training procedure to concentrate more on optimizing confusing type pairs. Specifically, we introduce a cost-weighted term into the training loss, which penalizes more on mislabeling between confusing label pairs. Furthermore, we also propose two estimators which can effectively measure such label confusion based on instance-level or population-level statistics. Experiments on TAC-KBP 2017 datasets demonstrate that the proposed method can significantly improve the performances of different models in both English and Chinese event detection.

pdf bib
Iterative Dual Domain Adaptation for Neural Machine Translation
Jiali Zeng | Yang Liu | Jinsong Su | Yubing Ge | Yaojie Lu | Yongjing Yin | Jiebo Luo
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Previous studies on the domain adaptation for neural machine translation (NMT) mainly focus on the one-pass transferring out-of-domain translation knowledge to in-domain NMT model. In this paper, we argue that such a strategy fails to fully extract the domain-shared translation knowledge, and repeatedly utilizing corpora of different domains can lead to better distillation of domain-shared translation knowledge. To this end, we propose an iterative dual domain adaptation framework for NMT. Specifically, we first pretrain in-domain and out-of-domain NMT models using their own training corpora respectively, and then iteratively perform bidirectional translation knowledge transfer (from in-domain to out-of-domain and then vice versa) based on knowledge distillation until the in-domain NMT model convergences. Furthermore, we extend the proposed framework to the scenario of multiple out-of-domain training corpora, where the above-mentioned transfer is performed sequentially between the in-domain and each out-of-domain NMT models in the ascending order of their domain similarities. Empirical results on Chinese-English and English-German translation tasks demonstrate the effectiveness of our framework.

pdf bib
Gazetteer-Enhanced Attentive Neural Networks for Named Entity Recognition
Hongyu Lin | Yaojie Lu | Xianpei Han | Le Sun | Bin Dong | Shanshan Jiang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Current region-based NER models only rely on fully-annotated training data to learn effective region encoder, which often face the training data bottleneck. To alleviate this problem, this paper proposes Gazetteer-Enhanced Attentive Neural Networks, which can enhance region-based NER by learning name knowledge of entity mentions from easily-obtainable gazetteers, rather than only from fully-annotated data. Specially, we first propose an attentive neural network (ANN), which explicitly models the mention-context association and therefore is convenient for integrating externally-learned knowledge. Then we design an auxiliary gazetteer network, which can effectively encode name regularity of mentions only using gazetteers. Finally, the learned gazetteer network is incorporated into ANN for better NER. Experiments show that our ANN can achieve the state-of-the-art performance on ACE2005 named entity recognition benchmark. Besides, incorporating gazetteer network can further improve the performance and significantly reduce the requirement of training data.

2018

pdf bib
Adaptive Scaling for Sparse Detection in Information Extraction
Hongyu Lin | Yaojie Lu | Xianpei Han | Le Sun
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper focuses on detection tasks in information extraction, where positive instances are sparsely distributed and models are usually evaluated using F-measure on positive classes. These characteristics often result in deficient performance of neural network based detection models. In this paper, we propose adaptive scaling, an algorithm which can handle the positive sparsity problem and directly optimize over F-measure via dynamic cost-sensitive learning. To this end, we borrow the idea of marginal utility from economics and propose a theoretical framework for instance importance measuring without introducing any additional hyper-parameters. Experiments show that our algorithm leads to a more effective and stable training of neural network based detection models.

pdf bib
Nugget Proposal Networks for Chinese Event Detection
Hongyu Lin | Yaojie Lu | Xianpei Han | Le Sun
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Neural network based models commonly regard event detection as a word-wise classification task, which suffer from the mismatch problem between words and event triggers, especially in languages without natural word delimiters such as Chinese. In this paper, we propose Nugget Proposal Networks (NPNs), which can solve the word-trigger mismatch problem by directly proposing entire trigger nuggets centered at each character regardless of word boundaries. Specifically, NPNs perform event detection in a character-wise paradigm, where a hybrid representation for each character is first learned to capture both structural and semantic information from both characters and words. Then based on learned representations, trigger nuggets are proposed and categorized by exploiting character compositional structures of Chinese event triggers. Experiments on both ACE2005 and TAC KBP 2017 datasets show that NPNs significantly outperform the state-of-the-art methods.

2015

pdf bib
Shallow Convolutional Neural Network for Implicit Discourse Relation Recognition
Biao Zhang | Jinsong Su | Deyi Xiong | Yaojie Lu | Hong Duan | Junfeng Yao
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing