Yiming Chen


2024

pdf bib
Unveiling the Achilles’ Heel of NLG Evaluators: A Unified Adversarial Framework Driven by Large Language Models
Yiming Chen | Chen Zhang | Danqing Luo | Luis Fernando D’Haro | Robby Tan | Haizhou Li
Findings of the Association for Computational Linguistics ACL 2024

The automatic evaluation of natural language generation (NLG) systems presents a long-lasting challenge. Recent studies have highlighted various neural metrics that align well with human evaluations. Yet, the robustness of these evaluators against adversarial perturbations remains largely under-explored due to the unique challenges in obtaining adversarial data for different NLG evaluation tasks. To address the problem, we introduce AdvEval, a novel black-box adversarial framework against NLG evaluators. AdvEval is specially tailored to generate data that yield strong disagreements between human and victim evaluators. Specifically, inspired by the recent success of large language models (LLMs) in text generation and evaluation, we adopt strong LLMs as both the data generator and gold evaluator. Adversarial data are automatically optimized with feedback from the gold and victim evaluator. We conduct experiments on 12 victim evaluators and 11 NLG datasets, spanning tasks including dialogue, summarization, and question evaluation. The results show that AdvEval can lead to significant performance degradation of various victim metrics, thereby validating its efficacy.

2023

pdf bib
Dynamic Transformers Provide a False Sense of Efficiency
Yiming Chen | Simin Chen | Zexin Li | Wei Yang | Cong Liu | Robby Tan | Haizhou Li
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite much success in natural language processing (NLP), pre-trained language models typically lead to a high computational cost during inference. Multi-exit is a mainstream approach to address this issue by making a trade-off between efficiency and accuracy, where the saving of computation comes from an early exit. However, whether such saving from early-exiting is robust remains unknown. Motivated by this, we first show that directly adapting existing adversarial attack approaches targeting model accuracy cannot significantly reduce inference efficiency. To this end, we propose a simple yet effective attacking framework, SAME, a novel slowdown attack framework on multi-exit models, which is specially tailored to reduce the efficiency of the multi-exit models. By leveraging the multi-exit models’ design characteristics, we utilize all internal predictions to guide the adversarial sample generation instead of merely considering the final prediction. Experiments on the GLUE benchmark show that SAME can effectively diminish the efficiency gain of various multi-exit models by 80% on average, convincingly validating its effectiveness and generalization ability.

2022

pdf bib
Analyzing and Evaluating Faithfulness in Dialogue Summarization
Bin Wang | Chen Zhang | Yan Zhang | Yiming Chen | Haizhou Li
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Dialogue summarization is abstractive in nature, making it suffer from factual errors. The factual correctness of summaries has the highest priority before practical applications. Many efforts have been made to improve faithfulness in text summarization. However, there is a lack of systematic study on dialogue summarization systems. In this work, we first perform the fine-grained human analysis on the faithfulness of dialogue summaries and observe that over 35% of generated summaries are faithfully inconsistent respective the source dialogues. Furthermore, we present a new model-level faithfulness evaluation method. It examines generation models with multi-choice questions created by rule-based transformations. Experimental results show that our evaluation schema is a strong proxy for the factual correctness of summarization models. The human-annotated faithfulness samples and the evaluation toolkit are released to facilitate future research toward faithful dialogue summarization.

pdf bib
Generate, Discriminate and Contrast: A Semi-Supervised Sentence Representation Learning Framework
Yiming Chen | Yan Zhang | Bin Wang | Zuozhu Liu | Haizhou Li
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Most sentence embedding techniques heavily rely on expensive human-annotated sentence pairs as the supervised signals. Despite the use of large-scale unlabeled data, the performance of unsupervised methods typically lags far behind that of the supervised counterparts in most downstream tasks. In this work, we propose a semi-supervised sentence embedding framework, GenSE, that effectively leverages large-scale unlabeled data. Our method include three parts: 1) Generate: A generator/discriminator model is jointly trained to synthesize sentence pairs from open-domain unlabeled corpus; 2) Discriminate: Noisy sentence pairs are filtered out by the discriminator to acquire high-quality positive and negative sentence pairs; 3) Contrast: A prompt-based contrastive approach is presented for sentence representation learning with both annotated and synthesized data. Comprehensive experiments show that GenSE achieves an average correlation score of 85.19 on the STS datasets and consistent performance improvement on four domain adaptation tasks, significantly surpassing the state-of-the-art methods and convincingly corroborating its effectiveness and generalization ability.

2021

pdf bib
Revisiting Self-training for Few-shot Learning of Language Model
Yiming Chen | Yan Zhang | Chen Zhang | Grandee Lee | Ran Cheng | Haizhou Li
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

As unlabeled data carry rich task-relevant information, they are proven useful for few-shot learning of language model. The question is how to effectively make use of such data. In this work, we revisit the self-training technique for language model fine-tuning and present a state-of-the-art prompt-based few-shot learner, SFLM. Given two views of a text sample via weak and strong augmentation techniques, SFLM generates a pseudo label on the weakly augmented version. Then, the model predicts the same pseudo label when fine-tuned with the strongly augmented version. This simple approach is shown to outperform other state-of-the-art supervised and semi-supervised counterparts on six sentence classification and six sentence-pair classification benchmarking tasks. In addition, SFLM only relies on a few in-domain unlabeled data. We conduct a comprehensive analysis to demonstrate the robustness of our proposed approach under various settings, including augmentation techniques, model scale, and few-shot knowledge transfer across tasks.

pdf bib
DynaEval: Unifying Turn and Dialogue Level Evaluation
Chen Zhang | Yiming Chen | Luis Fernando D’Haro | Yan Zhang | Thomas Friedrichs | Grandee Lee | Haizhou Li
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

A dialogue is essentially a multi-turn interaction among interlocutors. Effective evaluation metrics should reflect the dynamics of such interaction. Existing automatic metrics are focused very much on the turn-level quality, while ignoring such dynamics. To this end, we propose DynaEval, a unified automatic evaluation framework which is not only capable of performing turn-level evaluation, but also holistically considers the quality of the entire dialogue. In DynaEval, the graph convolutional network (GCN) is adopted to model a dialogue in totality, where the graph nodes denote each individual utterance and the edges represent the dependency between pairs of utterances. A contrastive loss is then applied to distinguish well-formed dialogues from carefully constructed negative samples. Experiments show that DynaEval significantly outperforms the state-of-the-art dialogue coherence model, and correlates strongly with human judgements across multiple dialogue evaluation aspects at both turn and dialogue level.