We investigate response generation for multi-turn dialogue in generative chatbots. Existing generative modelsbased on RNNs (Recurrent Neural Networks) usually employ the last hidden state to summarize the history, which makesmodels unable to capture the subtle variability observed in different dialogues and cannot distinguish the differencesbetween dialogues that are similar in composition. In this paper, we propose Pseudo-Variational Gated Recurrent Unit (PVGRU). The key novelty of PVGRU is a recurrent summarizing variable thataggregates the accumulated distribution variations of subsequences. We train PVGRU without relying on posterior knowledge, thus avoiding the training-inference inconsistency problem. PVGRU can perceive subtle semantic variability through summarizing variables that are optimized by two objectives we employ for training: distribution consistency and reconstruction. In addition, we build a Pseudo-Variational Hierarchical Dialogue(PVHD) model based on PVGRU. Experimental results demonstrate that PVGRU can broadly improve the diversity andrelevance of responses on two benchmark datasets.
Current end-to-end retrieval-based dialogue systems are mainly based on Recurrent Neural Networks or Transformers with attention mechanisms. Although promising results have been achieved, these models often suffer from slow inference or huge number of parameters. In this paper, we propose a novel lightweight fully convolutional architecture, called DialogConv, for response selection. DialogConv is exclusively built on top of convolution to extract matching features of context and response. Dialogues are modeled in 3D views, where DialogConv performs convolution operations on embedding view, word view and utterance view to capture richer semantic information from multiple contextual views. On the four benchmark datasets, compared with state-of-the-art baselines, DialogConv is on average about 8.5x smaller in size, and 79.39x and 10.64x faster on CPU and GPU devices, respectively. At the same time, DialogConv achieves the competitive effectiveness of response selection.
Building dialogue generation systems in a zero-shot scenario remains a huge challenge, since the typical zero-shot approaches in dialogue generation rely heavily on large-scale pre-trained language generation models such as GPT-3 and T5. The research on zero-shot dialogue generation without cumbersome language models is limited due to lacking corresponding parallel dialogue corpora. In this paper, we propose a simple but effective Multilingual learning framework for Zero-shot Dialogue Generation (dubbed as MulZDG) that can effectively transfer knowledge from an English corpus with large-scale training samples to a non-English corpus with zero samples. Besides, MulZDG can be viewed as a multilingual data augmentation method to improve the performance of the resource-rich language. First, we construct multilingual code-switching dialogue datasets via translation utterances randomly selected from monolingual English datasets. Then we employ MulZDG to train a unified multilingual dialogue model based on the code-switching datasets. The MulZDG can conduct implicit semantic alignment between different languages. Experiments on DailyDialog and DSTC7 datasets demonstrate that MulZDG not only achieve competitive performance under zero-shot case compared to training with sufficient examples but also greatly improve the performance of the source language.
Relation classification is an important task in natural language processing fields. State-of-the-art methods usually concentrate on building deep neural networks based classification models on the training data in which the relations of the labeled entity pairs are given. However, these methods usually suffer from the data sparsity issue greatly. On the other hand, we notice that it is very easily to obtain some concise text descriptions for almost all of the entities in a relation classification task. The text descriptions can provide helpful supplementary information for relation classification. But they are ignored by most of existing methods. In this paper, we propose DesRC, a new neural relation classification method which integrates entities’ text descriptions into deep neural networks models. We design a two-level attention mechanism to select the most useful information from the “intra-sentence” aspect and the “cross-sentence” aspect. Besides, the adversarial training method is also used to further improve the classification per-formance. Finally, we evaluate the proposed method on the SemEval 2010 dataset. Extensive experiments show that our method achieves much better experimental results than other state-of-the-art relation classification methods.