Dialogue state tracking (DST) aims to convert the dialogue history into dialogue states which consist of slot-value pairs. As condensed structural information memorizes all history information, the dialogue state in the previous turn is typically adopted as the input for predicting the current state by DST models. However, these models tend to keep the predicted slot values unchanged, which is defined as state momentum in this paper. Specifically, the models struggle to update slot values that need to be changed and correct wrongly predicted slot values in the previous turn. To this end, we propose MoNET to tackle state momentum via noise-enhanced training. First, the previous state of each turn in the training data is noised via replacing some of its slot values. Then, the noised previous state is used as the input to learn to predict the current state, improving the model’s ability to update and correct slot values. Furthermore, a contrastive contextmatching framework is designed to narrow the representation distance between a state and itscorresponding noised variant, which reduces the impact of noised state and makes the model better understand the dialogue history. Experimental results on MultiWOZ datasets show that MoNET outperforms previous DST methods. Ablations and analysis verify the effectiveness of MoNET in alleviating state momentum issues and improving the anti-noise ability.
High-quality data is essential for conversational recommendation systems and serves as the cornerstone of the network architecture development and training strategy design. Existing works contribute heavy human efforts to manually labeling or designing and extending recommender dialogue templates. However, they suffer from: (i) the limited number of human annotators results in datasets can hardly capture rich and large-scale cases in the real world, (ii) the limited experience and knowledge of annotators accounts for the uninformative corpus and inappropriate recommendations. In this paper, we propose a novel automatic dataset synthesis approach that can generate large-scale and high-quality recommendation dialogues through a data2text generation process, where unstructured recommendation conversations are generated from structured graphs based on user-item information from the real world. In doing so, we comprehensively exploit: (i) rich personalized user profiles from traditional recommendation datasets, (ii) rich external knowledge from knowledge graphs, and (iii) the conversation ability contained in human-to-human conversational recommendation datasets. Extensive experiments validate the benefit brought by the automatically synthesized data under low-resource scenarios, and demonstrate the promising potential to facilitate developing a more effective conversational recommendation system.
Traditional end-to-end task-oriented dialog systems first convert dialog context into belief state and action state before generating the system response. The system response performance is significantly affected by the quality of the belief state and action state. We first explore what dialog context representation is beneficial to improving the quality of the belief state and action state, which further enhances the generated response quality. To tackle our exploration, we propose Mars, an end-to-end task-oriented dialog system with two contrastive learning strategies to model the relationship between dialog context and belief/action state representations. Empirical results show dialog context representations, which are more different from semantic state representations, are more conducive to multi-turn task-oriented dialog. Moreover, our proposed Mars achieves state-of-the-art performance on the MultiWOZ 2.0, CamRest676, and CrossWOZ.
Pre-trained Language Models (PLMs) have shown effectiveness in various Natural Language Processing (NLP) tasks. Denoising autoencoder is one of the most successful pre-training frameworks, learning to recompose the original text given a noise-corrupted one. The existing studies mainly focus on injecting noises into the input. This paper introduces a simple yet effective pre-training paradigm, equipped with a knowledge-enhanced decoder that predicts the next entity token with noises in the prefix, explicitly strengthening the representation learning of entities that span over multiple input tokens. Specifically, when predicting the next token within an entity, we feed masks into the prefix in place of some of the previous ground-truth tokens that constitute the entity. Our model achieves new state-of-the-art results on two knowledge-driven data-to-text generation tasks with up to 2% BLEU gains.
Question answering requiring discrete reasoning, e.g., arithmetic computing, comparison, and counting, over knowledge is a challenging task.In this paper, we propose UniRPG, a semantic-parsing-based approach advanced in interpretability and scalability, to perform Unified discrete Reasoning over heterogeneous knowledge resources, i.e., table and text, as Program Generation. Concretely, UniRPG consists of a neural programmer and a symbolic program executor,where a program is the composition of a set of pre-defined general atomic and higher-order operations and arguments extracted from table and text.First, the programmer parses a question into a program by generating operations and copying arguments, and then, the executor derives answers from table and text based on the program.To alleviate the costly program annotation issue, we design a distant supervision approach for programmer learning, where pseudo programs are automatically constructed without annotated derivations.Extensive experiments on the TAT-QA dataset show that UniRPG achieves tremendous improvements and enhances interpretability and scalability compared with previous state-of-the-art methods, even without derivation annotation.Moreover, it achieves promising performance on the textual dataset DROP without derivation annotation.
The popularity of multimodal dialogue has stimulated the need for a new generation of dialogue agents with multimodal interactivity.When users communicate with customer service, they may express their requirements by means of text, images, or even videos. Visual information usually acts as discriminators for product models, or indicators of product failures, which play an important role in the E-commerce scenario.On the other hand, detailed information provided by the images is limited, and typically, customer service systems cannot understand the intent of users without the input text.Thus, bridging the gap between the image and text is crucial for communicating with customers.In this paper, we construct JDDC 2.1, a large-scale multimodal multi-turn dialogue dataset collected from a mainstream Chinese E-commerce platform, containing about 246K dialogue sessions, 3M utterances, and 507K images, along with product knowledge bases and image category annotations. Over our dataset, we jointly define four tasks: the multimodal dialogue response generation task,the multimodal query rewriting task, the multimodal dialogue discourse parsing task, and the multimodal dialogue summarization task.JDDC 2.1 is the first corpus with annotations for all the above tasks over the same dialogue sessions, which facilitates the comprehensive research around the dialogue.In addition, we present several text-only and multimodal baselines and show the importance of visual information for these tasks. Our dataset and implements will be publicly available.
A typical end-to-end task-oriented dialog system transfers context into dialog state, and upon which generates a response, which usually faces the problem of error propagation from both previously generated inaccurate dialog states and responses, especially in low-resource scenarios. To alleviate these issues, we propose BORT, a back and denoising reconstruction approach for end-to-end task-oriented dialog system. Squarely, to improve the accuracy of dialog states, back reconstruction is used to reconstruct the original input context from the generated dialog states since inaccurate dialog states cannot recover the corresponding input context. To enhance the denoising capability of the model to reduce the impact of error propagation, denoising reconstruction is used to reconstruct the corrupted dialog state and response. Extensive experiments conducted on MultiWOZ 2.0 and CamRest676 show the effectiveness of BORT. Furthermore, BORT demonstrates its advanced capabilities in the zero-shot domain and low-resource scenarios.
Conventional autoregressive left-to-right (L2R) sequence generation faces two issues during decoding: limited to unidirectional target sequence modeling, and constrained on strong local dependencies.To address the aforementioned problem, we propose P3LM, a probabilistically permuted prophet language model, which strengthens the modeling of bidirectional information and long token dependencies for sequence generation.Specifically, P3LM learns to generate tokens in permuted order upon an order-aware transformer decoder, as well as to generate the corresponding future N tokens with a multi-stream attention mechanism.Extensive experiments are conducted on the GLGE benchmark, which includes four datasets for summarization, two for question generation, one for conversational question answering, and one for dialog response generation, where P3LM achieves state-of-the-art results compared with strong publicly available generative pre-training methods.
Hybrid question answering (HQA) aims to answer questions over heterogeneous data, including tables and passages linked to table cells. The heterogeneous data can provide different granularity evidence to HQA models, e.t., column, row, cell, and link. Conventional HQA models usually retrieve coarse- or fine-grained evidence to reason the answer. Through comparison, we find that coarse-grained evidence is easier to retrieve but contributes less to the reasoner, while fine-grained evidence is the opposite. To preserve the advantage and eliminate the disadvantage of different granularity evidence, we propose MuGER2, a Multi-Granularity Evidence Retrieval and Reasoning approach. In evidence retrieval, a unified retriever is designed to learn the multi-granularity evidence from the heterogeneous data. In answer reasoning, an evidence selector is proposed to navigate the fine-grained evidence for the answer reader based on the learned multi-granularity evidence. Experiment results on the HybridQA dataset show that MuGER2 significantly boosts the HQA performance. Further ablation analysis verifies the effectiveness of both the retrieval and reasoning designs.
Transformer-based pre-trained models, such as BERT, have shown extraordinary success in achieving state-of-the-art results in many natural language processing applications. However, deploying these models can be prohibitively costly, as the standard self-attention mechanism of the Transformer suffers from quadratic computational cost in the input sequence length. To confront this, we propose FCA, a fine- and coarse-granularity hybrid self-attention that reduces the computation cost through progressively shortening the computational sequence length in self-attention. Specifically, FCA conducts an attention-based scoring strategy to determine the informativeness of tokens at each layer. Then, the informative tokens serve as the fine-granularity computing units in self-attention and the uninformative tokens are replaced with one or several clusters as the coarse-granularity computing units in self-attention. Experiments on the standard GLUE benchmark show that BERT with FCA achieves 2x reduction in FLOPs over original BERT with <1% loss in accuracy. We show that FCA offers a significantly better trade-off between accuracy and FLOPs compared to prior methods.
Machine reading comprehension (MRC) that requires discrete reasoning involving symbolic operations, e.g., addition, sorting, and counting, is a challenging task. According to this nature, semantic parsing-based methods predict interpretable but complex logical forms. However, logical form generation is nontrivial and even a little perturbation in a logical form will lead to wrong answers. To alleviate this issue, multi-predictor -based methods are proposed to directly predict different types of answers and achieve improvements. However, they ignore the utilization of symbolic operations and encounter a lack of reasoning ability and interpretability. To inherit the advantages of these two types of methods, we propose OPERA, an operation-pivoted discrete reasoning framework, where lightweight symbolic operations (compared with logical forms) as neural modules are utilized to facilitate the reasoning ability and interpretability. Specifically, operations are first selected and then softly executed to simulate the answer reasoning procedure. Extensive experiments on both DROP and RACENum datasets show the reasoning ability of OPERA. Moreover, further analysis verifies its interpretability.
Dialogue state tracking (DST) aims to predict the current dialogue state given the dialogue history. Existing methods generally exploit the utterances of all dialogue turns to assign value for each slot. This could lead to suboptimal results due to the information introduced from irrelevant utterances in the dialogue history, which may be useless and can even cause confusion. To address this problem, we propose LUNA, a SLot-TUrN Alignment enhanced approach. It first explicitly aligns each slot with its most relevant utterance, then further predicts the corresponding value based on this aligned utterance instead of all dialogue utterances. Furthermore, we design a slot ranking auxiliary task to learn the temporal correlation among slots which could facilitate the alignment. Comprehensive experiments are conducted on three multi-domain task-oriented dialogue datasets, MultiWOZ 2.0, MultiWOZ 2.1, and MultiWOZ 2.2. The results show that LUNA achieves new state-of-the-art results on these datasets.
Keyphrases, that concisely summarize the high-level topics discussed in a document, can be categorized into present keyphrase which explicitly appears in the source text and absent keyphrase which does not match any contiguous subsequence but is highly semantically related to the source. Most existing keyphrase generation approaches synchronously generate present and absent keyphrases without explicitly distinguishing these two categories. In this paper, a Select-Guide-Generate (SGG) approach is proposed to deal with present and absent keyphrases generation separately with different mechanisms. Specifically, SGG is a hierarchical neural network which consists of a pointing-based selector at low layer concentrated on present keyphrase generation, a selection-guided generator at high layer dedicated to absent keyphrase generation, and a guider in the middle to transfer information from selector to generator. Experimental results on four keyphrase generation benchmarks demonstrate the effectiveness of our model, which significantly outperforms the strong baselines for both present and absent keyphrases generation. Furthermore, we extend SGG to a title generation task which indicates its extensibility in natural language generation tasks.
The copying mechanism has had considerable success in abstractive summarization, facilitating models to directly copy words from the input text to the output summary. Existing works mostly employ encoder-decoder attention, which applies copying at each time step independently of the former ones. However, this may sometimes lead to incomplete copying. In this paper, we propose a novel copying scheme named Correlational Copying Network (CoCoNet) that enhances the standard copying mechanism by keeping track of the copying history. It thereby takes advantage of prior copying distributions and, at each time step, explicitly encourages the model to copy the input word that is relevant to the previously copied one. In addition, we strengthen CoCoNet through pre-training with suitable corpora that simulate the copying behaviors. Experimental results show that CoCoNet can copy more accurately and achieves new state-of-the-art performances on summarization benchmarks, including CNN/DailyMail for news summarization and SAMSum for dialogue summarization. The code and checkpoint will be publicly available.
Existing pre-trained language models (PLMs) have demonstrated the effectiveness of self-supervised learning for a broad range of natural language processing (NLP) tasks. However, most of them are not explicitly aware of domain-specific knowledge, which is essential for downstream tasks in many domains, such as tasks in e-commerce scenarios. In this paper, we propose K-PLUG, a knowledge-injected pre-trained language model based on the encoder-decoder transformer that can be transferred to both natural language understanding and generation tasks. Specifically, we propose five knowledge-aware self-supervised pre-training objectives to formulate the learning of domain-specific knowledge, including e-commerce domain-specific knowledge-bases, aspects of product entities, categories of product entities, and unique selling propositions of product entities. We verify our method in a diverse range of e-commerce scenarios that require domain-specific knowledge, including product knowledge base completion, abstractive product summarization, and multi-turn dialogue. K-PLUG significantly outperforms baselines across the board, which demonstrates that the proposed method effectively learns a diverse set of domain-specific knowledge for both language understanding and generation tasks. Our code is available.
Transformer-based pre-trained models, such as BERT, have achieved remarkable results on machine reading comprehension. However, due to the constraint of encoding length (e.g., 512 WordPiece tokens), a long document is usually split into multiple chunks that are independently read. It results in the reading field being limited to individual chunks without information collaboration for long document machine reading comprehension. To address this problem, we propose RoR, a read-over-read method, which expands the reading field from chunk to document. Specifically, RoR includes a chunk reader and a document reader. The former first predicts a set of regional answers for each chunk, which are then compacted into a highly-condensed version of the original document, guaranteeing to be encoded once. The latter further predicts the global answers from this condensed document. Eventually, a voting strategy is utilized to aggregate and rerank the regional and global answers for final prediction. Extensive experiments on two benchmarks QuAC and TriviaQA demonstrate the effectiveness of RoR for long document reading. Notably, RoR ranks 1st place on the QuAC leaderboard (https://quac.ai/) at the time of submission (May 17th, 2021).
Automated Essay Scoring (AES) is a critical text regression task that automatically assigns scores to essays based on their writing quality. Recently, the performance of sentence prediction tasks has been largely improved by using Pre-trained Language Models via fusing representations from different layers, constructing an auxiliary sentence, using multi-task learning, etc. However, to solve the AES task, previous works utilize shallow neural networks to learn essay representations and constrain calculated scores with regression loss or ranking loss, respectively. Since shallow neural networks trained on limited samples show poor performance to capture deep semantic of texts. And without an accurate scoring function, ranking loss and regression loss measures two different aspects of the calculated scores. To improve AES’s performance, we find a new way to fine-tune pre-trained language models with multiple losses of the same task. In this paper, we propose to utilize a pre-trained language model to learn text representations first. With scores calculated from the representations, mean square error loss and the batch-wise ListNet loss with dynamic weights constrain the scores simultaneously. We utilize Quadratic Weighted Kappa to evaluate our model on the Automated Student Assessment Prize dataset. Our model outperforms not only state-of-the-art neural models near 3 percent but also the latest statistic model. Especially on the two narrative prompts, our model performs much better than all other state-of-the-art models.
Human conversations are complicated and building a human-like dialogue agent is an extremely challenging task. With the rapid development of deep learning techniques, data-driven models become more and more prevalent which need a huge amount of real conversation data. In this paper, we construct a large-scale real scenario Chinese E-commerce conversation corpus, JDDC, with more than 1 million multi-turn dialogues, 20 million utterances, and 150 million words. The dataset reflects several characteristics of human-human conversations, e.g., goal-driven, and long-term dependency among the context. It also covers various dialogue types including task-oriented, chitchat and question-answering. Extra intent information and three well-annotated challenge sets are also provided. Then, we evaluate several retrieval-based and generative models to provide basic benchmark performance on the JDDC corpus. And we hope JDDC can serve as an effective testbed and benefit the development of fundamental research in dialogue task.
In this work, we present a model to generate e-commerce product summaries. The consistency between the generated summary and the product attributes is an essential criterion for the ecommerce product summarization task. To enhance the consistency, first, we encode the product attribute table to guide the process of summary generation. Second, we identify the attribute words from the vocabulary, and we constrain these attribute words can be presented in the summaries only through copying from the source, i.e., the attribute words not in the source cannot be generated. We construct a Chinese e-commerce product summarization dataset, and the experimental results on this dataset demonstrate that our models significantly improve the faithfulness.
This paper aims to enhance the few-shot relation classification especially for sentences that jointly describe multiple relations. Due to the fact that some relations usually keep high co-occurrence in the same context, previous few-shot relation classifiers struggle to distinguish them with few annotated instances. To alleviate the above relation confusion problem, we propose CTEG, a model equipped with two novel mechanisms to learn to decouple these easily-confused relations. On the one hand, an Entity -Guided Attention (EGA) mechanism, which leverages the syntactic relations and relative positions between each word and the specified entity pair, is introduced to guide the attention to filter out information causing confusion. On the other hand, a Confusion-Aware Training (CAT) method is proposed to explicitly learn to distinguish relations by playing a pushing-away game between classifying a sentence into a true relation and its confusing relation. Extensive experiments are conducted on the FewRel dataset, and the results show that our proposed model achieves comparable and even much better results to strong baselines in terms of accuracy. Furthermore, the ablation test and case study verify the effectiveness of our proposed EGA and CAT, especially in addressing the relation confusion problem.
Copy module has been widely equipped in the recent abstractive summarization models, which facilitates the decoder to extract words from the source into the summary. Generally, the encoder-decoder attention is served as the copy distribution, while how to guarantee that important words in the source are copied remains a challenge. In this work, we propose a Transformer-based model to enhance the copy mechanism. Specifically, we identify the importance of each source word based on the degree centrality with a directed graph built by the self-attention layer in the Transformer. We use the centrality of each source word to guide the copy process explicitly. Experimental results show that the self-attention graph provides useful guidance for the copy distribution. Our proposed models significantly outperform the baseline methods on the CNN/Daily Mail dataset and the Gigaword dataset.
Product attribute values are essential in many e-commerce scenarios, such as customer service robots, product recommendations, and product retrieval. While in the real world, the attribute values of a product are usually incomplete and vary over time, which greatly hinders the practical applications. In this paper, we propose a multimodal method to jointly predict product attributes and extract values from textual product descriptions with the help of the product images. We argue that product attributes and values are highly correlated, e.g., it will be easier to extract the values on condition that the product attributes are given. Thus, we jointly model the attribute prediction and value extraction tasks from multiple aspects towards the interactions between attributes and values. Moreover, product images have distinct effects on our tasks for different product attributes and values. Thus, we selectively draw useful visual information from product images to enhance our model. We annotate a multimodal product attribute value dataset that contains 87,194 instances, and the experimental results on this dataset demonstrate that explicitly modeling the relationship between attributes and values facilitates our method to establish the correspondence between them, and selectively utilizing visual product information is necessary for the task. Our code and dataset are available at https://github.com/jd-aig/JAVE.
This study presents the NICT automatic speech recognition (ASR) system submitted for the IWSLT 2013 ASR evaluation. We apply two types of acoustic features and three types of acoustic models to the NICT ASR system. Our system is comprised of six subsystems with different acoustic features and models. This study reports the individual results and fusion of systems and highlights the improvements made by our proposed methods that include the automatic segmentation of audio data, language model adaptation, speaker adaptive training of deep neural network models, and the NICT SprinTra decoder. Our experimental results indicated that our proposed methods offer good performance improvements on lecture speech recognition tasks. Our results denoted a 13.5% word error rate on the IWSLT 2013 ASR English test data set.
This paper describes our automatic speech recognition (ASR) system for the IWSLT 2012 evaluation campaign. The target data of the campaign is selected from the TED talks, a collection of public speeches on a variety of topics spoken in English. Our ASR system is based on weighted finite-state transducers and exploits an combination of acoustic models for spontaneous speech, language models based on n-gram and factored recurrent neural network trained with effectively selected corpora, and unsupervised topic adaptation framework utilizing ASR results. Accordingly, the system achieved 10.6% and 12.0% word error rate for the tst2011 and tst2012 evaluation set, respectively.
In this study, we extend recurrent neural network-based language models (RNNLMs) by explicitly integrating morphological and syntactic factors (or features). Our proposed RNNLM is called a factored RNNLM that is expected to enhance RNNLMs. A number of experiments are carried out on top of state-of-the-art LVCSR system that show the factored RNNLM improves the performance measured by perplexity and word error rate. In the IWSLT TED test data sets, absolute word error rate reductions over RNNLM and n-gram LM are 0.4∼0.8 points.
In this paper, we describe NICT’s participation in the IWSLT 2011 evaluation campaign for the ASR Track. To recognize spontaneous speech, we prepared an acoustic model trained by more spontaneous speech corpora and a language model constructed with text corpora distributed by the organizer. We built the multi-pass ASR system by adapting the acoustic and language models with previous ASR results. The target speech was selected from talks on the TED (Technology, Entertainment, Design) program. Here, a large reduction in word error rate was obtained by the speaker adaptation of the acoustic model with MLLR. Additional improvement was achieved not only by adaptation of the language model but also by parallel usage of the baseline and speaker-dependent acoustic models. Accordingly, the final WER was reduced by 30% from the baseline ASR for the distributed test set.