Yu Cao


2024

pdf bib
Corpus-Steered Query Expansion with Large Language Models
Yibin Lei | Yu Cao | Tianyi Zhou | Tao Shen | Andrew Yates
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2: Short Papers)

Recent studies demonstrate that query expansions generated by large language models (LLMs) can considerably enhance information retrieval systems by generating hypothetical documents that answer the queries as expansions. However, challenges arise from misalignments between the expansions and the retrieval corpus, resulting in issues like hallucinations and outdated information due to the limited intrinsic knowledge of LLMs. Inspired by Pseudo Relevance Feedback (PRF), we introduce Corpus-Steered Query Expansion (CSQE) to promote the incorporation of knowledge embedded within the corpus. CSQE utilizes the relevance assessing capability of LLMs to systematically identify pivotal sentences in the initially-retrieved documents. These corpus-originated texts are subsequently used to expand the query together with LLM-knowledge empowered expansions, improving the relevance prediction between the query and the target documents. Extensive experiments reveal that CSQE exhibits strong performance without necessitating any training, especially with queries for which LLMs lack knowledge.

pdf bib
Meta-Task Prompting Elicits Embeddings from Large Language Models
Yibin Lei | Di Wu | Tianyi Zhou | Tao Shen | Yu Cao | Chongyang Tao | Andrew Yates
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We introduce a new unsupervised text embedding method, Meta-Task Prompting with Explicit One-Word Limitation (MetaEOL), for generating high-quality sentence embeddings from Large Language Models (LLMs) without the need for model fine-tuning. Leveraging meta-task prompting, MetaEOL guides LLMs to produce embeddings through a series of carefully designed prompts that address multiple representational aspects. Our comprehensive experiments demonstrate that embeddings averaged from various meta-tasks are versatile embeddings that yield competitive performance on Semantic Textual Similarity (STS) benchmarks and excel in downstream tasks, surpassing contrastive-trained models. Our findings suggest a new scaling law, offering a versatile and resource-efficient approach for embedding generation across diverse scenarios.

2023

pdf bib
Unsupervised Dense Retrieval with Relevance-Aware Contrastive Pre-Training
Yibin Lei | Liang Ding | Yu Cao | Changtong Zan | Andrew Yates | Dacheng Tao
Findings of the Association for Computational Linguistics: ACL 2023

Dense retrievers have achieved impressive performance, but their demand for abundant training data limits their application scenarios. Contrastive pre-training, which constructs pseudo-positive examples from unlabeled data, has shown great potential to solve this problem. However, the pseudo-positive examples crafted by data augmentations can be irrelevant. To this end, we propose relevance-aware contrastive learning. It takes the intermediate-trained model itself as an imperfect oracle to estimate the relevance of positive pairs and adaptively weighs the contrastive loss of different pairs according to the estimated relevance. Our method consistently improves the SOTA unsupervised Contriever model on the BEIR and open-domain QA retrieval benchmarks. Further exploration shows that our method can not only beat BM25 after further pre-training on the target corpus but also serves as a good few-shot learner. Our code is publicly available at https://github.com/Yibin-Lei/ReContriever.

2022

pdf bib
TASA: Deceiving Question Answering Models by Twin Answer Sentences Attack
Yu Cao | Dianqi Li | Meng Fang | Tianyi Zhou | Jun Gao | Yibing Zhan | Dacheng Tao
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

We present Twin Answer Sentences Attack (TASA), an adversarial attack method for question answering (QA) models that produces fluent and grammatical adversarial contexts while maintaining gold answers. Despite phenomenal progress on general adversarial attacks, few works have investigated the vulnerability and attack specifically for QA models. In this work, we first explore the biases in the existing models and discover that they mainly rely on keyword matching between the question and context, and ignore the relevant contextual relations for answer prediction.Based on two biases above, TASA attacks the target model in two folds: (1) lowering the model’s confidence on the gold answer with a perturbed answer sentence; (2) misguiding the model towards a wrong answer with a distracting answer sentence. Equipped with designed beam search and filtering methods, TASA can generate more effective attacks than existing textual attack methods while sustaining the quality of contexts, in extensive experiments on five QA datasets and human evaluations.

pdf bib
Phrase-level Textual Adversarial Attack with Label Preservation
Yibin Lei | Yu Cao | Dianqi Li | Tianyi Zhou | Meng Fang | Mykola Pechenizkiy
Findings of the Association for Computational Linguistics: NAACL 2022

Generating high-quality textual adversarial examples is critical for investigating the pitfalls of natural language processing (NLP) models and further promoting their robustness. Existing attacks are usually realized through word-level or sentence-level perturbations, which either limit the perturbation space or sacrifice fluency and textual quality, both affecting the attack effectiveness. In this paper, we propose Phrase-Level Textual Adversarial ATtack (PLAT) that generates adversarial samples through phrase-level perturbations. PLAT first extracts the vulnerable phrases as attack targets by a syntactic parser, and then perturbs them by a pre-trained blank-infilling model. Such flexible perturbation design substantially expands the search space for more effective attacks without introducing too many modifications, and meanwhile maintaining the textual fluency and grammaticality via contextualized generation using surrounding texts. Moreover, we develop a label preservation filter leveraging the likelihoods of language models fine-tuned on each class, rather than textual similarity, to rule out those perturbations that potentially alter the original class label for humans. Extensive experiments and human evaluation demonstrate that PLAT has a superior attack effectiveness as well as a better label consistency than strong baselines.

pdf bib
A Model-agnostic Data Manipulation Method for Persona-based Dialogue Generation
Yu Cao | Wei Bi | Meng Fang | Shuming Shi | Dacheng Tao
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Towards building intelligent dialogue agents, there has been a growing interest in introducing explicit personas in generation models. However, with limited persona-based dialogue data at hand, it may be difficult to train a dialogue generation model well. We point out that the data challenges of this generation task lie in two aspects: first, it is expensive to scale up current persona-based dialogue datasets; second, each data sample in this task is more complex to learn with than conventional dialogue data. To alleviate the above data issues, we propose a data manipulation method, which is model-agnostic to be packed with any persona-based dialogue generation model to improve their performance. The original training samples will first be distilled and thus expected to be fitted more easily. Next, we show various effective ways that can diversify such easier distilled data. A given base model will then be trained via the constructed data curricula, i.e. first on augmented distilled samples and then on original ones. Experiments illustrate the superiority of our method with two strong base dialogue models (Transformer encoder-decoder and GPT2).

pdf bib
On the Complementarity between Pre-Training and Random-Initialization for Resource-Rich Machine Translation
Changtong Zan | Liang Ding | Li Shen | Yu Cao | Weifeng Liu | Dacheng Tao
Proceedings of the 29th International Conference on Computational Linguistics

Pre-Training (PT) of text representations has been successfully applied to low-resource Neural Machine Translation (NMT). However, it usually fails to achieve notable gains (some- times, even worse) on resource-rich NMT on par with its Random-Initialization (RI) counterpart. We take the first step to investigate the complementarity between PT and RI in resource-rich scenarios via two probing analyses, and find that: 1) PT improves NOT the accuracy, but the generalization by achieving flatter loss landscapes than that of RI; 2) PT improves NOT the confidence of lexical choice, but the negative diversity by assigning smoother lexical probability distributions than that of RI. Based on these insights, we propose to combine their complementarities with a model fusion algorithm that utilizes optimal transport to align neurons between PT and RI. Experiments on two resource-rich translation benchmarks, WMT’17 English-Chinese (20M) and WMT’19 English-German (36M), show that PT and RI could be nicely complementary to each other, achieving substantial improvements considering both translation accuracy, generalization, and negative diversity. Probing tools and code are released at: https://github.com/zanchangtong/PTvsRI.

pdf bib
Interpretable Proof Generation via Iterative Backward Reasoning
Hanhao Qu | Yu Cao | Jun Gao | Liang Ding | Ruifeng Xu
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We present IBR, an Iterative Backward Reasoning model to solve the proof generation tasks on rule-based Question Answering (QA), where models are required to reason over a series of textual rules and facts to find out the related proof path and derive the final answer. We handle the limitations of existed works in two folds: 1) enhance the interpretability of reasoning procedures with detailed tracking, by predicting nodes and edges in the proof path iteratively backward from the question; 2) promote the efficiency and accuracy via reasoning on the elaborate representations of nodes and history paths, without any intermediate texts that may introduce external noise during proof generation. There are three main modules in IBR, QA and proof strategy prediction to obtain the answer and offer guidance for the following procedure; parent node prediction to determine a node in the existing proof that a new child node will link to; child node prediction to find out which new node will be added to the proof. Experiments on both synthetic and paraphrased datasets demonstrate that IBR has better in-domain performance as well as cross-domain transferability than several strong baselines. Our code and models are available at https://github.com/find-knowledge/IBR.

2021

pdf bib
DAGN: Discourse-Aware Graph Network for Logical Reasoning
Yinya Huang | Meng Fang | Yu Cao | Liwei Wang | Xiaodan Liang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recent QA with logical reasoning questions requires passage-level relations among the sentences. However, current approaches still focus on sentence-level relations interacting among tokens. In this work, we explore aggregating passage-level clues for solving logical reasoning QA by using discourse-based information. We propose a discourse-aware graph network (DAGN) that reasons relying on the discourse structure of the texts. The model encodes discourse information as a graph with elementary discourse units (EDUs) and discourse relations, and learns the discourse-aware features via a graph network for downstream QA tasks. Experiments are conducted on two logical reasoning QA datasets, ReClor and LogiQA, and our proposed DAGN achieves competitive results. The source code is available at https://github.com/Eleanor-H/DAGN.

pdf bib
Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations
Jun Gao | Yuhan Liu | Haolin Deng | Wei Wang | Yu Cao | Jiachen Du | Ruifeng Xu
Findings of the Association for Computational Linguistics: EMNLP 2021

Current approaches to empathetic response generation focus on learning a model to predict an emotion label and generate a response based on this label and have achieved promising results. However, the emotion cause, an essential factor for empathetic responding, is ignored. The emotion cause is a stimulus for human emotions. Recognizing the emotion cause is helpful to better understand human emotions so as to generate more empathetic responses. To this end, we propose a novel framework that improves empathetic response generation by recognizing emotion cause in conversations. Specifically, an emotion reasoner is designed to predict a context emotion label and a sequence of emotion cause-oriented labels, which indicate whether the word is related to the emotion cause. Then we devise both hard and soft gated attention mechanisms to incorporate the emotion cause into response generation. Experiments show that incorporating emotion cause information improves the performance of the model on both emotion recognition and response generation.

2020

pdf bib
Pretrained Language Models for Dialogue Generation with Multiple Input Sources
Yu Cao | Wei Bi | Meng Fang | Dacheng Tao
Findings of the Association for Computational Linguistics: EMNLP 2020

Large-scale pretrained language models have achieved outstanding performance on natural language understanding tasks. However, it is still under investigating how to apply them to dialogue generation tasks, especially those with responses conditioned on multiple sources. Previous work simply concatenates all input sources or averages information from different input sources. In this work, we study dialogue models with multiple input sources adapted from the pretrained language model GPT2. We explore various methods to fuse multiple separate attention information corresponding to different sources. Our experimental results show that proper fusion methods deliver higher relevance with dialogue history than simple fusion baselines.

2019

pdf bib
BAG: Bi-directional Attention Entity Graph Convolutional Network for Multi-hop Reasoning Question Answering
Yu Cao | Meng Fang | Dacheng Tao
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Multi-hop reasoning question answering requires deep comprehension of relationships between various documents and queries. We propose a Bi-directional Attention Entity Graph Convolutional Network (BAG), leveraging relationships between nodes in an entity graph and attention information between a query and the entity graph, to solve this task. Graph convolutional networks are used to obtain a relation-aware representation of nodes for entity graphs built from documents with multi-level features. Bidirectional attention is then applied on graphs and queries to generate a query-aware nodes representation, which will be used for the final prediction. Experimental evaluation shows BAG achieves state-of-the-art accuracy performance on the QAngaroo WIKIHOP dataset.

pdf bib
Investigating BERT’s Knowledge of Language: Five Analysis Methods with NPIs
Alex Warstadt | Yu Cao | Ioana Grosu | Wei Peng | Hagen Blix | Yining Nie | Anna Alsop | Shikha Bordia | Haokun Liu | Alicia Parrish | Sheng-Fu Wang | Jason Phang | Anhad Mohananey | Phu Mon Htut | Paloma Jeretic | Samuel R. Bowman
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Though state-of-the-art sentence representation models can perform tasks requiring significant knowledge of grammar, it is an open question how best to evaluate their grammatical knowledge. We explore five experimental methods inspired by prior work evaluating pretrained sentence representation models. We use a single linguistic phenomenon, negative polarity item (NPI) licensing, as a case study for our experiments. NPIs like any are grammatical only if they appear in a licensing environment like negation (Sue doesn’t have any cats vs. *Sue has any cats). This phenomenon is challenging because of the variety of NPI licensing environments that exist. We introduce an artificially generated dataset that manipulates key features of NPI licensing for the experiments. We find that BERT has significant knowledge of these features, but its success varies widely across different experimental methods. We conclude that a variety of methods is necessary to reveal all relevant aspects of a model’s grammatical knowledge in a given domain.