Yu Zhang


2024

pdf bib
Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs
Bowen Jin | Chulin Xie | Jiawei Zhang | Kashob Kumar Roy | Yu Zhang | Zheng Li | Ruirui Li | Xianfeng Tang | Suhang Wang | Yu Meng | Jiawei Han
Findings of the Association for Computational Linguistics ACL 2024

Large language models (LLMs), while exhibiting exceptional performance, suffer from hallucinations, especially on knowledge-intensive tasks. Existing works propose to augment LLMs with individual text units retrieved from external knowledge corpora to alleviate the issue. However, in many domains, texts are interconnected (e.g., academic papers in a bibliographic graph are linked by citations and co-authorships) which form a (text-attributed) graph. The knowledge in such graphs is encoded not only in single texts/nodes but also in their associated connections. To facilitate the research of augmenting LLMs with graphs, we manually construct a Graph Reasoning Benchmark dataset called GRBench, containing 1,740 questions that can be answered with the knowledge from 10 domain graphs. Then, we propose a simple and effective framework called Graph Chain-of-thought (Graph-CoT) to augment LLMs with graphs by encouraging LLMs to reason on the graph iteratively. Each Graph-CoT iteration consists of three sub-steps: LLM reasoning, LLM-graph interaction, and graph execution. We conduct systematic experiments with three LLM backbones on GRBench, where Graph-CoT outperforms the baselines consistently. The code is available at https://github.com/PeterGriffinJin/Graph-CoT/.

pdf bib
Planning First, Question Second: An LLM-Guided Method for Controllable Question Generation
Kunze Li | Yu Zhang
Findings of the Association for Computational Linguistics ACL 2024

In the field of education, for better assessment of students’ abilities, generated questions often need to meet experts’ requirements, indicating the need for controllable question generation (CQG). However, current CQG methods mainly focus on difficulty control, neglecting the control of question content and assessed abilities, which are also crucial in educational QG. In this paper, we propose an LLM-guided method PFQS (for Planning First, Question Second), which utilizes Llama 2 to generate an answer plan and then generates questions based on it. The plan not only includes candidate answers but also integrates LLM’s understanding and multiple requirements, which make question generation simple and controllable. We evaluate our approach on the FairytaleQA dataset, a well-structured QA dataset derived from child-friendly storybooks. In the dataset, the attribute label represents content control, while the local_or_sum and ex_or_im labels denote difficulty control. Experimental results demonstrate that our approach outperforms previous state-of-the-art results and achieves better consistency with requirements compared to prompt-based method. Further application of our method to Llama 2 and Mistral also leads to improved requirement consistency in a zero-shot setting.

pdf bib
Forward-Backward Reasoning in Large Language Models for Mathematical Verification
Weisen Jiang | Han Shi | Longhui Yu | Zhengying Liu | Yu Zhang | Zhenguo Li | James Kwok
Findings of the Association for Computational Linguistics ACL 2024

Self-Consistency samples diverse reasoning chains with answers and chooses the final answer by majority voting. It is based on forward reasoning and cannot further improve performance by sampling more reasoning chains when saturated. To further boost performance, we introduce backward reasoning to verify candidate answers. Specifically, for mathematical tasks, we mask a number in the question and ask the LLM to answer a backward question created by a simple template, i.e., to predict the masked number when a candidate answer is provided. Instead of using forward or backward reasoning alone, we propose **FOBAR** to combine **FO**rward and **BA**ckward **R**easoning for verification. Extensive experiments on six standard mathematical data sets and three LLMs show that FOBAR achieves state-of-the-art performance. In particular, FOBAR outperforms Self-Consistency, which uses forward reasoning alone, demonstrating that combining forward and backward reasoning is more accurate in verification. In addition, FOBAR achieves higher accuracy than existing verification methods, showing the effectiveness of the simple template used in backward reasoning and the proposed combination.

pdf bib
Selective Prompting Tuning for Personalized Conversations with LLMs
Qiushi Huang | Xubo Liu | Tom Ko | Bo Wu | Wenwu Wang | Yu Zhang | Lilian Tang
Findings of the Association for Computational Linguistics ACL 2024

In conversational AI, personalizing dialogues with persona profiles and contextual understanding is essential. Despite large language models’ (LLMs) improved response coherence, effective persona integration remains a challenge. In this work, we first study two common approaches for personalizing LLMs: textual prompting and direct fine-tuning. We observed that textual prompting often struggles to yield responses that are similar to the ground truths in datasets, while direct fine-tuning tends to produce repetitive or overly generic replies. To alleviate those issues, we propose **S**elective **P**rompt **T**uning (SPT), which softly prompts LLMs for personalized conversations in a selective way. Concretely, SPT initializes a set of soft prompts and uses a trainable dense retriever to adaptively select suitable soft prompts for LLMs according to different input contexts, where the prompt retriever is dynamically updated through feedback from the LLMs. Additionally, we propose context-prompt contrastive learning and prompt fusion learning to encourage the SPT to enhance the diversity of personalized conversations. Experiments on the CONVAI2 dataset demonstrate that SPT significantly enhances response diversity by up to 90%, along with improvements in other critical performance indicators. Those results highlight the efficacy of SPT in fostering engaging and personalized dialogue generation. The SPT model code is [publicly available](https://github.com/hqsiswiliam/SPT) for further exploration.

pdf bib
Knowledge-aware Attention Network for Medication Effectiveness Prediction
Yingying Zhang | Xian Wu | Yu Zhang | Yefeng Zheng
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

The first 24 hours’ medication plan is critical to patients with serious or life-threatening illnesses and injuries. An appropriate medication can result in a lower mortality, a shorter length stay and a higher APACHE score. However, in clinical practice, the medication plan is often error-prone, especially when a decision must be made quickly for life-threatening situations in Intensive Care Unit (ICU). Therefore, predicting the effectiveness of the first 24 hours’ medication plan is of great importance in assisting doctors to make proper decisions. Existing effectiveness prediction works usually focus on one specific medicine, one specific disease, or one specific lab test, making it hard to extend to general medicines and diseases in hospital/ICU scenarios. In this paper, we propose to predict medication effectiveness of the first 24 hours in hospital/ICU based on patients’ information. Specifically, we use a knowledge enhanced module to incorporate external knowledge about medications and a medical feature learning module to determine the interaction between diagnosis and medications. To handle the data imbalance problem, we further optimize the proposed model with a contrastive loss. Extensive experimental results on a public dataset show that our model can significantly outperform state-of-the-art methods.

pdf bib
Robust Singing Voice Transcription Serves Synthesis
Ruiqi Li | Yu Zhang | Yongqi Wang | Zhiqing Hong | Rongjie Huang | Zhou Zhao
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Note-level Automatic Singing Voice Transcription (AST) converts singing recordings into note sequences, facilitating the automatic annotation of singing datasets for Singing Voice Synthesis (SVS) applications. Current AST methods, however, struggle with accuracy and robustness when used for practical annotation. This paper presents ROSVOT, the first robust AST model that serves SVS, incorporating a multi-scale framework that effectively captures coarse-grained note information and ensures fine-grained frame-level segmentation, coupled with an attention-based pitch decoder for reliable pitch prediction. We also established a comprehensive annotation-and-training pipeline for SVS to test the model in real-world settings. Experimental findings reveal that the proposed model achieves state-of-the-art transcription accuracy with either clean or noisy inputs. Moreover, when trained on enlarged, automatically annotated datasets, the SVS model outperforms its baseline, affirming the capability for practical application. Audio samples are available at https://rosvot.github.io. Codes can be found at https://github.com/RickyL-2000/ROSVOT.

2023

pdf bib
Learning Retrieval Augmentation for Personalized Dialogue Generation
Qiushi Huang | Shuai Fu | Xubo Liu | Wenwu Wang | Tom Ko | Yu Zhang | Lilian Tang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Personalized dialogue generation, focusing on generating highly tailored responses by leveraging persona profiles and dialogue context, has gained significant attention in conversational AI applications. However, persona profiles, a prevalent setting in current personalized dialogue datasets, typically composed of merely four to five sentences, may not offer comprehensive descriptions of the persona about the agent, posing a challenge to generate truly personalized dialogues. To handle this problem, we propose Learning Retrieval Augmentation for Personalized DialOgue Generation (LAPDOG), which studies the potential of leveraging external knowledge for persona dialogue generation. Specifically, the proposed LAPDOG model consists of a story retriever and a dialogue generator. The story retriever uses a given persona profile as queries to retrieve relevant information from the story document, which serves as a supplementary context to augment the persona profile. The dialogue generator utilizes both the dialogue history and the augmented persona profile to generate personalized responses. For optimization, we adopt a joint training framework that collaboratively learns the story retriever and dialogue generator, where the story retriever is optimized towards desired ultimate metrics (e.g., BLEU) to retrieve content for the dialogue generator to generate personalized responses. Experiments conducted on the CONVAI2 dataset with ROCStory as a supplementary data source show that the proposed LAPDOG method substantially outperforms the baselines, indicating the effectiveness of the proposed method. The LAPDOG model code is publicly available for further exploration.

pdf bib
Non-autoregressive Text Editing with Copy-aware Latent Alignments
Yu Zhang | Yue Zhang | Leyang Cui | Guohong Fu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Recent work has witnessed a paradigm shift from Seq2Seq to Seq2Edit in the field of text editing, with the aim of addressing the slow autoregressive inference problem posed by the former. Despite promising results, Seq2Edit approaches still face several challenges such as inflexibility in generation and difficulty in generalizing to other languages. In this work, we propose a novel non-autoregressive text editing method to circumvent the above issues, by modeling the edit process with latent CTC alignments. We make a crucial extension to CTC by introducing the copy operation into the edit space, thus enabling more efficient management of textual overlap in editing. We conduct extensive experiments on GEC and sentence fusion tasks, showing that our proposed method significantly outperforms existing Seq2Edit models and achieves similar or even better results than Seq2Seq with over speedup. Moreover, it demonstrates good generalizability on German and Russian. In-depth analyses reveal the strengths of our method in terms of the robustness under various scenarios and generating fluent and flexible outputs.

pdf bib
Improved Pseudo Data for Machine Translation Quality Estimation with Constrained Beam Search
Xiang Geng | Yu Zhang | Zhejian Lai | Shuaijie She | Wei Zou | Shimin Tao | Hao Yang | Jiajun Chen | Shujian Huang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Machine translation (MT) quality estimation (QE) is a crucial task to estimate the quality of MT outputs when reference translations are unavailable. Many studies focus on generating pseudo data using large parallel corpus and achieve remarkable success in the supervised setting. However, pseudo data solutions are less satisfying in unsupervised scenarios because the pseudo labels are inaccurate or the pseudo translations differ from the real ones. To address these problems, we propose to generate pseudo data using the MT model with constrained beam search (CBSQE). CBSQE preserves the reference parts with high MT probabilities as correct translations, while the rest parts as the wrong ones for MT generation. Therefore, CBSQE can reduce the false negative labels caused by synonyms. Overall, beam search will prefer a more real hypothesis with a higher MT generation likelihood. Extensive experiments demonstrate that CBSQE outperforms strong baselines in both supervised and unsupervised settings. Analyses further show the superiority of CBSQE. The code is available at https://github.com/NJUNLP/njuqe.

pdf bib
PIEClass: Weakly-Supervised Text Classification with Prompting and Noise-Robust Iterative Ensemble Training
Yunyi Zhang | Minhao Jiang | Yu Meng | Yu Zhang | Jiawei Han
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Weakly-supervised text classification trains a classifier using the label name of each target class as the only supervision, which largely reduces human annotation efforts. Most existing methods first use the label names as static keyword-based features to generate pseudo labels, which are then used for final classifier training. While reasonable, such a commonly adopted framework suffers from two limitations: (1) keywords can have different meanings in different contexts and some text may not have any keyword, so keyword matching can induce noisy and inadequate pseudo labels; (2) the errors made in the pseudo label generation stage will directly propagate to the classifier training stage without a chance of being corrected. In this paper, we propose a new method, PIEClass, consisting of two modules: (1) a pseudo label acquisition module that uses zero-shot prompting of pre-trained language models (PLM) to get pseudo labels based on contextualized text understanding beyond static keyword matching, and (2) a noise-robust iterative ensemble training module that iteratively trains classifiers and updates pseudo labels by utilizing two PLM fine-tuning methods that regularize each other. Extensive experiments show that PIEClass achieves overall better performance than existing strong baselines on seven benchmark datasets and even achieves similar performance to fully-supervised classifiers on sentiment classification tasks.

pdf bib
PersonaPKT: Building Personalized Dialogue Agents via Parameter-efficient Knowledge Transfer
Xu Han | Bin Guo | Yoon Jung | Benjamin Yao | Yu Zhang | Xiaohu Liu | Chenlei Guo
Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP)

pdf bib
UseClean: learning from complex noisy labels in named entity recognition
Jinjin Tian | Kun Zhou | Meiguo Wang | Yu Zhang | Benjamin Yao | Xiaohu Liu | Chenlei Guo
Proceedings of the 2023 CLASP Conference on Learning with Small Data (LSD)

We investigate and refine denoising methods for NER task on data that potentially contains extremely noisy labels from multi-sources. In this paper, we first summarized all possible noise types and noise generation schemes, based on which we built a thorough evaluation system. We then pinpoint the bottleneck of current state-of-art denoising methods using our evaluation system. Correspondingly, we propose several refinements, including using a two-stage framework to avoid error accumulation; a novel confidence score utilizing minimal clean supervision to increase predictive power; an automatic cutoff fitting to save extensive hyper-parameter tuning; a warm started weighted partial CRF to better learn on the noisy tokens. Additionally, we propose to use adaptive sampling to further boost the performance in long-tailed entity settings. Our method improves F1 score by on average at least 5 10% over current state-of-art across extensive experiments.

pdf bib
Explanation Graph Generation via Generative Pre-training over Synthetic Graphs
Han Cui | Shangzhan Li | Yu Zhang | Qi Shi
Findings of the Association for Computational Linguistics: ACL 2023

The generation of explanation graphs is a significant task that aims to produce explanation graphs in response to user input, revealing the internal reasoning process. This task is challenging due to the significant discrepancy be- tween unstructured user queries and structured explanation graphs. Current research commonly fine-tunes a text-based pre-trained language model on a small downstream dataset that is annotated with labeled graphs. However, due to the limited scale of available datasets, this approach may prove to be insufficient in bridging the gap between natural language text and structured graphs. In this paper, to alleviate the above limitations, we propose a novel pre-trained framework EG3P(for Explanation Graph Generation via Generative Pre-training over synthetic graphs) for the explanation graph generation task. Specifically, we first propose a text-to-graph generative task to pre-train the model with the goal of bridging the text-graph gap. Additionally, we propose an automatic corpus synthesis strategy for synthesizing a large scale of high-quality corpus, reducing the reliance on costly manual annotation methods. Experimental results on ExplaGraphs show the effectiveness of EG3P that our model surpasses all baseline systems with remarkable margins. Besides, further analysis demonstrates that EG3P is able to generate better explanation graphs on actual reasoning tasks such as CommonsenseQA and OpenbookQA.

pdf bib
KICGPT: Large Language Model with Knowledge in Context for Knowledge Graph Completion
Yanbin Wei | Qiushi Huang | Yu Zhang | James Kwok
Findings of the Association for Computational Linguistics: EMNLP 2023

Knowledge Graph Completion (KGC) is crucial for addressing knowledge graph incompleteness and supporting downstream applications. Many models have been proposed for KGC and they can be categorized into two main classes, including triple-based and test-based approaches. Triple-based methods struggle with long-tail entities due to limited structural information and imbalanced distributions of entities. Text-based methods alleviate this issue but require costly training for language models and specific finetuning for knowledge graphs, which limits their efficiency. To alleviate the limitations in the two approaches, in this paper, we propose KICGPT, a framework that integrates a large language model (LLM) and a triple-based KGC retriever, to alleviate the long-tail problem without incurring additional training overhead. In the proposed KICGPT model, we propose an in-context learning strategy called Knowledge Prompt, which encodes structural knowledge into demonstrations to guide LLM. Empirical results on benchmark datasets demonstrate the effectiveness of the proposed KICGPT model with lighter training overhead and no finetuning.

pdf bib
Pre-training Multi-task Contrastive Learning Models for Scientific Literature Understanding
Yu Zhang | Hao Cheng | Zhihong Shen | Xiaodong Liu | Ye-Yi Wang | Jianfeng Gao
Findings of the Association for Computational Linguistics: EMNLP 2023

Scientific literature understanding tasks have gained significant attention due to their potential to accelerate scientific discovery. Pre-trained language models (LMs) have shown effectiveness in these tasks, especially when tuned via contrastive learning. However, jointly utilizing pre-training data across multiple heterogeneous tasks (e.g., extreme multi-label paper classification, citation prediction, and literature search) remains largely unexplored. To bridge this gap, we propose a multi-task contrastive learning framework, SciMult, with a focus on facilitating common knowledge sharing across different scientific literature understanding tasks while preventing task-specific skills from interfering with each other. To be specific, we explore two techniques – task-aware specialization and instruction tuning. The former adopts a Mixture-of-Experts Transformer architecture with task-aware sub-layers; the latter prepends task-specific instructions to the input text so as to produce task-aware outputs. Extensive experiments on a comprehensive collection of benchmark datasets verify the effectiveness of our task-aware specialization strategy, where we outperform state-of-the-art scientific pre-trained LMs. Code, datasets, and pre-trained models can be found at https://scimult.github.io/.

pdf bib
Unify Word-level and Span-level Tasks: NJUNLP’s Participation for the WMT2023 Quality Estimation Shared Task
Xiang Geng | Zhejian Lai | Yu Zhang | Shimin Tao | Hao Yang | Jiajun Chen | Shujian Huang
Proceedings of the Eighth Conference on Machine Translation

We introduce the submissions of the NJUNLP team to the WMT 2023 Quality Estimation (QE) shared task. Our team submitted predictions for the English-German language pair on all two sub-tasks: (i) sentence- and word-level quality prediction; and (ii) fine-grained error span detection. This year, we further explore pseudo data methods for QE based on NJUQE framework (https://github.com/NJUNLP/njuqe). We generate pseudo MQM data using parallel data from the WMT translation task. We pre-train the XLMR large model on pseudo QE data, then fine-tune it on real QE data. At both stages, we jointly learn sentence-level scores and word-level tags. Empirically, we conduct experiments to find the key hyper-parameters that improve the performance. Technically, we propose a simple method that covert the word-level outputs to fine-grained error span results. Overall, our models achieved the best results in English-German for both word-level and fine-grained error span detection sub-tasks by a considerable margin.

pdf bib
Chain-of-Skills: A Configurable Model for Open-Domain Question Answering
Kaixin Ma | Hao Cheng | Yu Zhang | Xiaodong Liu | Eric Nyberg | Jianfeng Gao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The retrieval model is an indispensable component for real-world knowledge-intensive tasks, e.g., open-domain question answering (ODQA). As separate retrieval skills are annotated for different datasets, recent work focuses on customized methods, limiting the model transfer- ability and scalability. In this work, we propose a modular retriever where individual modules correspond to key skills that can be reused across datasets. Our approach supports flexible skill configurations based on the target domain to boost performance. To mitigate task interference, we design a novel modularization parameterization inspired by sparse Transformer. We demonstrate that our model can benefit from self-supervised pretraining on Wikipedia and fine-tuning using multiple ODQA datasets, both in a multi-task fashion. Our approach outperforms recent self-supervised retrievers in zero-shot evaluations and achieves state-of-the-art fine-tuned retrieval performance on NQ, HotpotQA and OTT-QA.

pdf bib
Patton: Language Model Pretraining on Text-Rich Networks
Bowen Jin | Wentao Zhang | Yu Zhang | Yu Meng | Xinyang Zhang | Qi Zhu | Jiawei Han
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

A real-world text corpus sometimes comprises not only text documents, but also semantic links between them (e.g., academic papers in a bibliographic network are linked by citations and co-authorships).Text documents and semantic connections form a text-rich network, which empowers a wide range of downstream tasks such as classification and retrieval. However, pretraining methods for such structures are still lacking, making it difficult to build one generic model that can be adapted to various tasks on text-rich networks. Current pretraining objectives, such as masked language modeling, purely model texts and do not take inter-document structure information into consideration. To this end, we propose our PretrAining on TexT-Rich NetwOrk framework Patton.Patton includes two pretraining strategies: network-contextualized masked language modeling and masked node prediction, to capture the inherent dependency between textual attributes and network structure. We conduct experiments on four downstream tasks in five datasets from both academic and e-commerce domains, where Patton outperforms baselines significantly and consistently.

pdf bib
Transforming Visual Scene Graphs to Image Captions
Xu Yang | Jiawei Peng | Zihua Wang | Haiyang Xu | Qinghao Ye | Chenliang Li | Songfang Huang | Fei Huang | Zhangzikang Li | Yu Zhang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We propose to TransForm Scene Graphs into more descriptive Captions (TFSGC). In TFSGC, we apply multi-head attention (MHA) to design the Graph Neural Network (GNN) for embedding scene graphs. After embedding, different graph embeddings contain diverse specific knowledge for generating the words with different part-of-speech, e.g., object/attribute embedding is good for generating nouns/adjectives. Motivated by this, we design a Mixture-of-Expert (MOE)-based decoder, where each expert is built on MHA, for discriminating the graph embeddings to generate different kinds of words. Since both the encoder and decoder are built based on the MHA, as a result, we construct a simple and homogeneous encoder-decoder unlike the previous heterogeneous ones which usually apply Fully-Connected-based GNN and LSTM-based decoder. The homogeneous architecture enables us to unify the training configuration of the whole model instead of specifying different training strategies for diverse sub-networks as in the heterogeneous pipeline, which releases the training difficulty. Extensive experiments on the MS-COCO captioning benchmark validate the effectiveness of our TFSGC. The code is in: https://anonymous.4open.science/r/ACL23_TFSGC.

2022

pdf bib
Joint Goal Segmentation and Goal Success Prediction on Multi-Domain Conversations
Meiguo Wang | Benjamin Yao | Bin Guo | Xiaohu Liu | Yu Zhang | Tuan-Hung Pham | Chenlei Guo
Proceedings of the 29th International Conference on Computational Linguistics

To evaluate the performance of a multi-domain goal-oriented Dialogue System (DS), it is important to understand what the users’ goals are for the conversations and whether those goals are successfully achieved. The success rate of goals directly correlates with user satisfaction and perceived usefulness of the DS. In this paper, we propose a novel automatic dialogue evaluation framework that jointly performs two tasks: goal segmentation and goal success prediction. We extend the RoBERTa-IQ model (Gupta et al., 2021) by adding multi-task learning heads for goal segmentation and success prediction. Using an annotated dataset from a commercial DS, we demonstrate that our proposed model reaches an accuracy that is on-par with single-pass human annotation comparing to a three-pass gold annotation benchmark.

pdf bib
Fast and Accurate End-to-End Span-based Semantic Role Labeling as Word-based Graph Parsing
Shilin Zhou | Qingrong Xia | Zhenghua Li | Yu Zhang | Yu Hong | Min Zhang
Proceedings of the 29th International Conference on Computational Linguistics

This paper proposes to cast end-to-end span-based SRL as a word-based graph parsing task. The major challenge is how to represent spans at the word level. Borrowing ideas from research on Chinese word segmentation and named entity recognition, we propose and compare four different schemata of graph representation, i.e., BES, BE, BIES, and BII, among which we find that the BES schema performs the best. We further gain interesting insights through detailed analysis. Moreover, we propose a simple constrained Viterbi procedure to ensure the legality of the output graph according to the constraints of the SRL structure. We conduct experiments on two widely used benchmark datasets, i.e., CoNLL05 and CoNLL12. Results show that our word-based graph parsing approach achieves consistently better performance than previous results, under all settings of end-to-end and predicate-given, without and with pre-trained language models (PLMs). More importantly, our model can parse 669/252 sentences per second, without and with PLMs respectively.

pdf bib
Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures inside Arguments
Yu Zhang | Qingrong Xia | Shilin Zhou | Yong Jiang | Guohong Fu | Min Zhang
Proceedings of the 29th International Conference on Computational Linguistics

Semantic role labeling (SRL) is a fundamental yet challenging task in the NLP community. Recent works of SRL mainly fall into two lines: 1) BIO-based; 2) span-based. Despite ubiquity, they share some intrinsic drawbacks of not considering internal argument structures, potentially hindering the model’s expressiveness. The key challenge is arguments are flat structures, and there are no determined subtree realizations for words inside arguments. To remedy this, in this paper, we propose to regard flat argument spans as latent subtrees, accordingly reducing SRL to a tree parsing task. In particular, we equip our formulation with a novel span-constrained TreeCRF to make tree structures span-aware and further extend it to the second-order case. We conduct extensive experiments on CoNLL05 and CoNLL12 benchmarks. Results reveal that our methods perform favorably better than all previous syntax-agnostic works, achieving new state-of-the-art under both end-to-end and w/ gold predicates settings.

pdf bib
DuReadervis: A Chinese Dataset for Open-domain Document Visual Question Answering
Le Qi | Shangwen Lv | Hongyu Li | Jing Liu | Yu Zhang | Qiaoqiao She | Hua Wu | Haifeng Wang | Ting Liu
Findings of the Association for Computational Linguistics: ACL 2022

Open-domain question answering has been used in a wide range of applications, such as web search and enterprise search, which usually takes clean texts extracted from various formats of documents (e.g., web pages, PDFs, or Word documents) as the information source. However, designing different text extraction approaches is time-consuming and not scalable. In order to reduce human cost and improve the scalability of QA systems, we propose and study an Open-domain Document Visual Question Answering (Open-domain DocVQA) task, which requires answering questions based on a collection of document images directly instead of only document texts, utilizing layouts and visual features additionally. Towards this end, we introduce the first Chinese Open-domain DocVQA dataset called DuReadervis, containing about 15K question-answering pairs and 158K document images from the Baidu search engine. There are three main challenges in DuReadervis: (1) long document understanding, (2) noisy texts, and (3) multi-span answer extraction. The extensive experiments demonstrate that the dataset is challenging. Additionally, we propose a simple approach that incorporates the layout and visual features, and the experimental results show the effectiveness of the proposed approach. The dataset and code will be publicly available at https://github.com/baidu/DuReader/tree/master/DuReader-vis.

pdf bib
All Information is Valuable: Question Matching over Full Information Transmission Network
Le Qi | Yu Zhang | Qingyu Yin | Guidong Zheng | Wen Junjie | Jinlong Li | Ting Liu
Findings of the Association for Computational Linguistics: NAACL 2022

Question matching is the task of identifying whether two questions have the same intent. For better reasoning the relationship between questions, existing studies adopt multiple interaction modules and perform multi-round reasoning via deep neural networks. In this process, there are two kinds of critical information that are commonly employed: the representation information of original questions and the interactive information between pairs of questions. However, previous studies tend to transmit only one kind of information, while failing to utilize both kinds of information simultaneously. To address this problem, in this paper, we propose a Full Information Transmission Network (FITN) that can transmit both representation and interactive information together in a simultaneous fashion. More specifically, we employ a novel memory-based attention for keeping and transmitting the interactive information through a global interaction matrix. Besides, we apply an original-average mixed connection method to effectively transmit the representation information between different reasoning rounds, which helps to preserve the original representation features of questions along with the historical hidden features. Experiments on two standard benchmarks demonstrate that our approach outperforms strong baseline models.

pdf bib
LEMON: Language-Based Environment Manipulation via Execution-Guided Pre-training
Qi Shi | Qian Liu | Bei Chen | Yu Zhang | Ting Liu | Jian-Guang Lou
Findings of the Association for Computational Linguistics: EMNLP 2022

Language-based environment manipulation requires agents to manipulate the environment following natural language instructions, which is challenging due to the huge space of the environments.To address this challenge, various approaches have been proposed in recent work. Although these approaches work well for their intended environments, they are difficult to generalize across environments. In this work, we propose LEMON, a general framework for language-based environment manipulation tasks. Specifically, we first specify a general approach for language-based environment manipulation tasks, which can deal with various environments using the same generative language model. Then we propose an execution-guided pre-training strategy to inject prior knowledge of environments to the language model with a pure synthetic pre-training corpus. Experimental results on tasks including Alchemy, Scene, Tangrams, ProPara and Recipes demonstrate the effectiveness of LEMON: it achieves new state-of-the-art results on four of the tasks, and the execution-guided pre-training strategy brings remarkable improvements on all experimental tasks.

pdf bib
TSGP: Two-Stage Generative Prompting for Unsupervised Commonsense Question Answering
Yueqing Sun | Yu Zhang | Le Qi | Qi Shi
Findings of the Association for Computational Linguistics: EMNLP 2022

Without training on labeled task data, unsupervised commonsense question answering seems challenging since it requires commonsense knowledge beyond the context of questions. Previous methods typically retrieved from traditional knowledge bases or used pre-trained language models (PrLMs) to generate fixed types of knowledge, which have poor generalization ability.In this paper, we aim to address the above limitation by leveraging the implicit knowledge stored in PrLMs and propose a two-stage prompt-based unsupervised commonsense question answering framework (TSGP). We first use knowledge generation prompts to generate the knowledge required for questions with unlimited types and possible candidate answers independent of specified choices. Then, we further utilize answer generation prompts to generate possible candidate answers independent of specified choices. Experimental results and analysis on three different commonsense reasoning tasks, CommonsenseQA, OpenBookQA, and SocialIQA, demonstrate that TSGP significantly improves the reasoning ability of language models in unsupervised settings.

pdf bib
Disentangling Task Relations for Few-shot Text Classification via Self-Supervised Hierarchical Task Clustering
Juan Zha | Zheng Li | Ying Wei | Yu Zhang
Findings of the Association for Computational Linguistics: EMNLP 2022

Few-Shot Text Classification (FSTC) imitates humans to learn a new text classifier efficiently with only few examples, by leveraging prior knowledge from historical tasks. However, most prior works assume that all the tasks are sampled from a single data source, which cannot adapt to real-world scenarios where tasks are heterogeneous and lie in different distributions. As such, existing methods may suffer from their globally knowledge-shared mechanisms to handle the task heterogeneity. On the other hand, inherent task relationships are not explicitly captured, making task knowledge unorganized and hard to transfer to new tasks. Thus, we explore a new FSTC setting where tasks can come from a diverse range of data sources. To address the task heterogeneity, we propose a self-supervised hierarchical task clustering (SS-HTC) method. SS-HTC not only customizes the cluster-specific knowledge by dynamically organizing heterogeneous tasks into different clusters in hierarchical levels but also disentangles the underlying relations between tasks to improve the interpretability. Empirically, extensive experiments on five public FSTC benchmark datasets demonstrate the effectiveness of SS-HTC.

pdf bib
Seed-Guided Topic Discovery with Out-of-Vocabulary Seeds
Yu Zhang | Yu Meng | Xuan Wang | Sheng Wang | Jiawei Han
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Discovering latent topics from text corpora has been studied for decades. Many existing topic models adopt a fully unsupervised setting, and their discovered topics may not cater to users’ particular interests due to their inability of leveraging user guidance. Although there exist seed-guided topic discovery approaches that leverage user-provided seeds to discover topic-representative terms, they are less concerned with two factors: (1) the existence of out-of-vocabulary seeds and (2) the power of pre-trained language models (PLMs). In this paper, we generalize the task of seed-guided topic discovery to allow out-of-vocabulary seeds. We propose a novel framework, named SeeTopic, wherein the general knowledge of PLMs and the local semantics learned from the input corpus can mutually benefit each other. Experiments on three real datasets from different domains demonstrate the effectiveness of SeeTopic in terms of topic coherence, accuracy, and diversity.

pdf bib
JointLK: Joint Reasoning with Language Models and Knowledge Graphs for Commonsense Question Answering
Yueqing Sun | Qi Shi | Le Qi | Yu Zhang
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Existing KG-augmented models for commonsense question answering primarily focus on designing elaborate Graph Neural Networks (GNNs) to model knowledge graphs (KGs). However, they ignore (i) the effectively fusing and reasoning over question context representations and the KG representations, and (ii) automatically selecting relevant nodes from the noisy KGs during reasoning. In this paper, we propose a novel model, JointLK, which solves the above limitations through the joint reasoning of LM and GNN and the dynamic KGs pruning mechanism. Specifically, JointLK performs joint reasoning between LM and GNN through a novel dense bidirectional attention module, in which each question token attends on KG nodes and each KG node attends on question tokens, and the two modal representations fuse and update mutually by multi-step interactions. Then, the dynamic pruning module uses the attention weights generated by joint reasoning to prune irrelevant KG nodes recursively. We evaluate JointLK on the CommonsenseQA and OpenBookQA datasets, and demonstrate its improvements to the existing LM and LM+KG models, as well as its capability to perform interpretable reasoning.

pdf bib
SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing
Junyi Ao | Rui Wang | Long Zhou | Chengyi Wang | Shuo Ren | Yu Wu | Shujie Liu | Tom Ko | Qing Li | Yu Zhang | Zhihua Wei | Yao Qian | Jinyu Li | Furu Wei
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Motivated by the success of T5 (Text-To-Text Transfer Transformer) in pre-trained natural language processing models, we propose a unified-modal SpeechT5 framework that explores the encoder-decoder pre-training for self-supervised speech/text representation learning. The SpeechT5 framework consists of a shared encoder-decoder network and six modal-specific (speech/text) pre/post-nets. After preprocessing the input speech/text through the pre-nets, the shared encoder-decoder network models the sequence-to-sequence transformation, and then the post-nets generate the output in the speech/text modality based on the output of the decoder. Leveraging large-scale unlabeled speech and text data, we pre-train SpeechT5 to learn a unified-modal representation, hoping to improve the modeling capability for both speech and text. To align the textual and speech information into this unified semantic space, we propose a cross-modal vector quantization approach that randomly mixes up speech/text states with latent units as the interface between encoder and decoder. Extensive evaluations show the superiority of the proposed SpeechT5 framework on a wide variety of spoken language processing tasks, including automatic speech recognition, speech synthesis, speech translation, voice conversion, speech enhancement, and speaker identification.

pdf bib
NJUNLP’s Participation for the WMT2022 Quality Estimation Shared Task
Xiang Geng | Yu Zhang | Shujian Huang | Shimin Tao | Hao Yang | Jiajun Chen
Proceedings of the Seventh Conference on Machine Translation (WMT)

This paper presents submissions of the NJUNLP team in WMT 2022Quality Estimation shared task 1, where the goal is to predict the sentence-level and word-level quality for target machine translations. Our system explores pseudo data and multi-task learning. We propose several novel methods to generate pseudo data for different annotations using the conditional masked language model and the neural machine translation model. The proposed methods control the decoding process to generate more real pseudo translations. We pre-train the XLMR-large model with pseudo data and then fine-tune this model with real data both in the way of multi-task learning. We jointly learn sentence-level scores (with regression and rank tasks) and word-level tags (with a sequence tagging task). Our system obtains competitive results on different language pairs and ranks first place on both sentence- and word-level sub-tasks of the English-German language pair.

2021

pdf bib
A Coarse-to-Fine Labeling Framework for Joint Word Segmentation, POS Tagging, and Constituent Parsing
Yang Hou | Houquan Zhou | Zhenghua Li | Yu Zhang | Min Zhang | Zhefeng Wang | Baoxing Huai | Nicholas Jing Yuan
Proceedings of the 25th Conference on Computational Natural Language Learning

The most straightforward approach to joint word segmentation (WS), part-of-speech (POS) tagging, and constituent parsing is converting a word-level tree into a char-level tree, which, however, leads to two severe challenges. First, a larger label set (e.g., ≥ 600) and longer inputs both increase computational costs. Second, it is difficult to rule out illegal trees containing conflicting production rules, which is important for reliable model evaluation. If a POS tag (like VV) is above a phrase tag (like VP) in the output tree, it becomes quite complex to decide word boundaries. To deal with both challenges, this work proposes a two-stage coarse-to-fine labeling framework for joint WS-POS-PAR. In the coarse labeling stage, the joint model outputs a bracketed tree, in which each node corresponds to one of four labels (i.e., phrase, subphrase, word, subword). The tree is guaranteed to be legal via constrained CKY decoding. In the fine labeling stage, the model expands each coarse label into a final label (such as VP, VP*, VV, VV*). Experiments on Chinese Penn Treebank 5.1 and 7.0 show that our joint model consistently outperforms the pipeline approach on both settings of w/o and w/ BERT, and achieves new state-of-the-art performance.

pdf bib
Logic-level Evidence Retrieval and Graph-based Verification Network for Table-based Fact Verification
Qi Shi | Yu Zhang | Qingyu Yin | Ting Liu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Table-based fact verification task aims to verify whether the given statement is supported by the given semi-structured table. Symbolic reasoning with logical operations plays a crucial role in this task. Existing methods leverage programs that contain rich logical information to enhance the verification process. However, due to the lack of fully supervised signals in the program generation process, spurious programs can be derived and employed, which leads to the inability of the model to catch helpful logical operations. To address the aforementioned problems, in this work, we formulate the table-based fact verification task as an evidence retrieval and reasoning framework, proposing the Logic-level Evidence Retrieval and Graph-based Verification network (LERGV). Specifically, we first retrieve logic-level program-like evidence from the given table and statement as supplementary evidence for the table. After that, we construct a logic-level graph to capture the logical relations between entities and functions in the retrieved evidence, and design a graph-based verification network to perform logic-level graph-based reasoning based on the constructed graph to classify the final entailment relation. Experimental results on the large-scale benchmark TABFACT show the effectiveness of the proposed approach.

pdf bib
Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training
Yu Meng | Yunyi Zhang | Jiaxin Huang | Xuan Wang | Yu Zhang | Heng Ji | Jiawei Han
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

We study the problem of training named entity recognition (NER) models using only distantly-labeled data, which can be automatically obtained by matching entity mentions in the raw text with entity types in a knowledge base. The biggest challenge of distantly-supervised NER is that the distant supervision may induce incomplete and noisy labels, rendering the straightforward application of supervised learning ineffective. In this paper, we propose (1) a noise-robust learning scheme comprised of a new loss function and a noisy label removal step, for training NER models on distantly-labeled data, and (2) a self-training method that uses contextualized augmentations created by pre-trained language models to improve the generalization ability of the NER model. On three benchmark datasets, our method achieves superior performance, outperforming existing distantly-supervised NER models by significant margins.

2020

pdf bib
A Large Scale Speech Sentiment Corpus
Eric Chen | Zhiyun Lu | Hao Xu | Liangliang Cao | Yu Zhang | James Fan
Proceedings of the Twelfth Language Resources and Evaluation Conference

We present a multimodal corpus for sentiment analysis based on the existing Switchboard-1 Telephone Speech Corpus released by the Linguistic Data Consortium. This corpus extends the Switchboard-1 Telephone Speech Corpus by adding sentiment labels from 3 different human annotators for every transcript segment. Each sentiment label can be one of three options: positive, negative, and neutral. Annotators are recruited using Google Cloud’s data labeling service and the labeling task was conducted over the internet. The corpus contains a total of 49500 labeled speech segments covering 140 hours of audio. To the best of our knowledge, this is the largest multimodal Corpus for sentiment analysis that includes both speech and text features.

pdf bib
Efficient Second-Order TreeCRF for Neural Dependency Parsing
Yu Zhang | Zhenghua Li | Min Zhang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

In the deep learning (DL) era, parsing models are extremely simplified with little hurt on performance, thanks to the remarkable capability of multi-layer BiLSTMs in context representation. As the most popular graph-based dependency parser due to its high efficiency and performance, the biaffine parser directly scores single dependencies under the arc-factorization assumption, and adopts a very simple local token-wise cross-entropy training loss. This paper for the first time presents a second-order TreeCRF extension to the biaffine parser. For a long time, the complexity and inefficiency of the inside-outside algorithm hinder the popularity of TreeCRF. To address this issue, we propose an effective way to batchify the inside and Viterbi algorithms for direct large matrix operation on GPUs, and to avoid the complex outside algorithm via efficient back-propagation. Experiments and analysis on 27 datasets from 13 languages clearly show that techniques developed before the DL era, such as structural learning (global TreeCRF loss) and high-order modeling are still useful, and can further boost parsing performance over the state-of-the-art biaffine parser, especially for partially annotated training data. We release our code at https://github.com/yzhangcs/crfpar.

pdf bib
Learn to Cross-lingual Transfer with Meta Graph Learning Across Heterogeneous Languages
Zheng Li | Mukul Kumar | William Headden | Bing Yin | Ying Wei | Yu Zhang | Qiang Yang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Recent emergence of multilingual pre-training language model (mPLM) has enabled breakthroughs on various downstream cross-lingual transfer (CLT) tasks. However, mPLM-based methods usually involve two problems: (1) simply fine-tuning may not adapt general-purpose multilingual representations to be task-aware on low-resource languages; (2) ignore how cross-lingual adaptation happens for downstream tasks. To address the issues, we propose a meta graph learning (MGL) method. Unlike prior works that transfer from scratch, MGL can learn to cross-lingual transfer by extracting meta-knowledge from historical CLT experiences (tasks), making mPLM insensitive to low-resource languages. Besides, for each CLT task, MGL formulates its transfer process as information propagation over a dynamic graph, where the geometric structure can automatically capture intrinsic language relationships to explicitly guide cross-lingual transfer. Empirically, extensive experiments on both public and real-world datasets demonstrate the effectiveness of the MGL method.

pdf bib
Learn to Combine Linguistic and Symbolic Information for Table-based Fact Verification
Qi Shi | Yu Zhang | Qingyu Yin | Ting Liu
Proceedings of the 28th International Conference on Computational Linguistics

Table-based fact verification is expected to perform both linguistic reasoning and symbolic reasoning. Existing methods lack attention to take advantage of the combination of linguistic information and symbolic information. In this work, we propose HeterTFV, a graph-based reasoning approach, that learns to combine linguistic information and symbolic information effectively. We first construct a program graph to encode programs, a kind of LISP-like logical form, to learn the semantic compositionality of the programs. Then we construct a heterogeneous graph to incorporate both linguistic information and symbolic information by introducing program nodes into the heterogeneous graph. Finally, we propose a graph-based reasoning approach to reason over the multiple types of nodes to make an effective combination of both types of information. Experimental results on a large-scale benchmark dataset TABFACT illustrate the effect of our approach.

2019

pdf bib
Transferable End-to-End Aspect-based Sentiment Analysis with Selective Adversarial Learning
Zheng Li | Xin Li | Ying Wei | Lidong Bing | Yu Zhang | Qiang Yang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Joint extraction of aspects and sentiments can be effectively formulated as a sequence labeling problem. However, such formulation hinders the effectiveness of supervised methods due to the lack of annotated sequence data in many domains. To address this issue, we firstly explore an unsupervised domain adaptation setting for this task. Prior work can only use common syntactic relations between aspect and opinion words to bridge the domain gaps, which highly relies on external linguistic resources. To resolve it, we propose a novel Selective Adversarial Learning (SAL) method to align the inferred correlation vectors that automatically capture their latent relations. The SAL method can dynamically learn an alignment weight for each word such that more important words can possess higher alignment weights to achieve fine-grained (word-level) adaptation. Empirically, extensive experiments demonstrate the effectiveness of the proposed SAL method.

pdf bib
HLT@SUDA at SemEval-2019 Task 1: UCCA Graph Parsing as Constituent Tree Parsing
Wei Jiang | Zhenghua Li | Yu Zhang | Min Zhang
Proceedings of the 13th International Workshop on Semantic Evaluation

This paper describes a simple UCCA semantic graph parsing approach. The key idea is to convert a UCCA semantic graph into a constituent tree, in which extra labels are deliberately designed to mark remote edges and discontinuous nodes for future recovery. In this way, we can make use of existing syntactic parsing techniques. Based on the data statistics, we recover discontinuous nodes directly according to the output labels of the constituent parser and use a biaffine classification model to recover the more complex remote edges. The classification model and the constituent parser are simultaneously trained under the multi-task learning framework. We use the multilingual BERT as extra features in the open tracks. Our system ranks the first place in the six English/German closed/open tracks among seven participating systems. For the seventh cross-lingual track, where there is little training data for French, we propose a language embedding approach to utilize English and German training data, and our result ranks the second place.

2018

pdf bib
Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks
Zhichun Wang | Qingsong Lv | Xiaohan Lan | Yu Zhang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Multilingual knowledge graphs (KGs) such as DBpedia and YAGO contain structured knowledge of entities in several distinct languages, and they are useful resources for cross-lingual AI and NLP applications. Cross-lingual KG alignment is the task of matching entities with their counterparts in different languages, which is an important way to enrich the cross-lingual links in multilingual KGs. In this paper, we propose a novel approach for cross-lingual KG alignment via graph convolutional networks (GCNs). Given a set of pre-aligned entities, our approach trains GCNs to embed entities of each language into a unified vector space. Entity alignments are discovered based on the distances between entities in the embedding space. Embeddings can be learned from both the structural and attribute information of entities, and the results of structure embedding and attribute embedding are combined to get accurate alignments. In the experiments on aligning real multilingual KGs, our approach gets the best performance compared with other embedding-based KG alignment approaches.

pdf bib
Simple Recurrent Units for Highly Parallelizable Recurrence
Tao Lei | Yu Zhang | Sida I. Wang | Hui Dai | Yoav Artzi
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Common recurrent neural architectures scale poorly due to the intrinsic difficulty in parallelizing their state computations. In this work, we propose the Simple Recurrent Unit (SRU), a light recurrent unit that balances model capacity and scalability. SRU is designed to provide expressive recurrence, enable highly parallelized implementation, and comes with careful initialization to facilitate training of deep models. We demonstrate the effectiveness of SRU on multiple NLP tasks. SRU achieves 5—9x speed-up over cuDNN-optimized LSTM on classification and question answering datasets, and delivers stronger results than LSTM and convolutional models. We also obtain an average of 0.7 BLEU improvement over the Transformer model (Vaswani et al., 2017) on translation by incorporating SRU into the architecture.

pdf bib
Deep Reinforcement Learning for Chinese Zero Pronoun Resolution
Qingyu Yin | Yu Zhang | Wei-Nan Zhang | Ting Liu | William Yang Wang
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent neural network models for Chinese zero pronoun resolution gain great performance by capturing semantic information for zero pronouns and candidate antecedents, but tend to be short-sighted, operating solely by making local decisions. They typically predict coreference links between the zero pronoun and one single candidate antecedent at a time while ignoring their influence on future decisions. Ideally, modeling useful information of preceding potential antecedents is crucial for classifying later zero pronoun-candidate antecedent pairs, a need which leads traditional models of zero pronoun resolution to draw on reinforcement learning. In this paper, we show how to integrate these goals, applying deep reinforcement learning to deal with the task. With the help of the reinforcement learning agent, our system learns the policy of selecting antecedents in a sequential manner, where useful information provided by earlier predicted antecedents could be utilized for making later coreference decisions. Experimental results on OntoNotes 5.0 show that our approach substantially outperforms the state-of-the-art methods under three experimental settings.

pdf bib
Zero Pronoun Resolution with Attention-based Neural Network
Qingyu Yin | Yu Zhang | Weinan Zhang | Ting Liu | William Yang Wang
Proceedings of the 27th International Conference on Computational Linguistics

Recent neural network methods for zero pronoun resolution explore multiple models for generating representation vectors for zero pronouns and their candidate antecedents. Typically, contextual information is utilized to encode the zero pronouns since they are simply gaps that contain no actual content. To better utilize contexts of the zero pronouns, we here introduce the self-attention mechanism for encoding zero pronouns. With the help of the multiple hops of attention, our model is able to focus on some informative parts of the associated texts and therefore produces an efficient way of encoding the zero pronouns. In addition, an attention-based recurrent neural network is proposed for encoding candidate antecedents by their contents. Experiment results are encouraging: our proposed attention-based model gains the best performance on the Chinese portion of the OntoNotes corpus, substantially surpasses existing Chinese zero pronoun resolution baseline systems.

2017

pdf bib
Chinese Zero Pronoun Resolution with Deep Memory Network
Qingyu Yin | Yu Zhang | Weinan Zhang | Ting Liu
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Existing approaches for Chinese zero pronoun resolution typically utilize only syntactical and lexical features while ignoring semantic information. The fundamental reason is that zero pronouns have no descriptive information, which brings difficulty in explicitly capturing their semantic similarities with antecedents. Meanwhile, representing zero pronouns is challenging since they are merely gaps that convey no actual content. In this paper, we address this issue by building a deep memory network that is capable of encoding zero pronouns into vector representations with information obtained from their contexts and potential antecedents. Consequently, our resolver takes advantage of semantic information by using these continuous distributed representations. Experiments on the OntoNotes 5.0 dataset show that the proposed memory network could substantially outperform the state-of-the-art systems in various experimental settings.

pdf bib
SCIR-QA at SemEval-2017 Task 3: CNN Model Based on Similar and Dissimilar Information between Keywords for Question Similarity
Le Qi | Yu Zhang | Ting Liu
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)

We describe a method of calculating the similarity of questions in community QA. Question in cQA are usually very long and there are a lot of useless information about calculating the similarity of questions. Therefore,we implement a CNN model based on similar and dissimilar information between question’s keywords. We extract the keywords of questions, and then model the similar and dissimilar information between the keywords, and use the CNN model to calculate the similarity.

pdf bib
Benben: A Chinese Intelligent Conversational Robot
Wei-Nan Zhang | Ting Liu | Bing Qin | Yu Zhang | Wanxiang Che | Yanyan Zhao | Xiao Ding
Proceedings of ACL 2017, System Demonstrations

2016

pdf bib
Neural Attention for Learning to Rank Questions in Community Question Answering
Salvatore Romeo | Giovanni Da San Martino | Alberto Barrón-Cedeño | Alessandro Moschitti | Yonatan Belinkov | Wei-Ning Hsu | Yu Zhang | Mitra Mohtarami | James Glass
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

In real-world data, e.g., from Web forums, text is often contaminated with redundant or irrelevant content, which leads to introducing noise in machine learning algorithms. In this paper, we apply Long Short-Term Memory networks with an attention mechanism, which can select important parts of text for the task of similar question retrieval from community Question Answering (cQA) forums. In particular, we use the attention weights for both selecting entire sentences and their subparts, i.e., word/chunk, from shallow syntactic trees. More interestingly, we apply tree kernels to the filtered text representations, thus exploiting the implicit features of the subtree space for learning question reranking. Our results show that the attention-based pruning allows for achieving the top position in the cQA challenge of SemEval 2016, with a relatively large gap from the other participants while greatly decreasing running time.

pdf bib
SLS at SemEval-2016 Task 3: Neural-based Approaches for Ranking in Community Question Answering
Mitra Mohtarami | Yonatan Belinkov | Wei-Ning Hsu | Yu Zhang | Tao Lei | Kfir Bar | Scott Cyphers | Jim Glass
Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)

2013

pdf bib
Joint Learning of Phonetic Units and Word Pronunciations for ASR
Chia-ying Lee | Yu Zhang | James Glass
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing

2012

pdf bib
The Use of Dependency Relation Graph to Enhance the Term Weighting in Question Retrieval
Weinan Zhang | Zhaoyan Ming | Yu Zhang | Liqiang Nie | Ting Liu | Tat-Seng Chua
Proceedings of COLING 2012

2010

pdf bib
Bridging Topic Modeling and Personalized Search
Wei Song | Yu Zhang | Ting Liu | Sheng Li
Coling 2010: Posters

2007

pdf bib
HIT: Web based Scoring Method for English Lexical Substitution
Shiqi Zhao | Lin Zhao | Yu Zhang | Ting Liu | Sheng Li
Proceedings of the Fourth International Workshop on Semantic Evaluations (SemEval-2007)

2005

pdf bib
Automated Generalization of Phrasal Paraphrases from the Web
Weigang Li | Ting Liu | Yu Zhang | Sheng Li | Wei He
Proceedings of the Third International Workshop on Paraphrasing (IWP2005)

Search
Co-authors