Yuning Mao


2024

pdf bib
MART: Improving LLM Safety with Multi-round Automatic Red-Teaming
Suyu Ge | Chunting Zhou | Rui Hou | Madian Khabsa | Yi-Chia Wang | Qifan Wang | Jiawei Han | Yuning Mao
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Red-teaming is a common practice for mitigating unsafe behaviors in Large Language Models (LLMs), which involves thoroughly assessing LLMs to identify potential flaws and addressing them with responsible and accurate responses.While effective, manual red-teaming is costly, and existing automatic red-teaming typically discovers safety risks without addressing them.In this paper, we propose a Multi-round Automatic Red-Teaming (MART) method, which incorporates both automatic adversarial prompt writing and safe response generation, significantly increasing red-teaming scalability and the safety of the target LLM.Specifically, an adversarial LLM and a target LLM interplay with each other in an iterative manner, where the adversarial LLM aims to generate challenging prompts that elicit unsafe responses from the target LLM, while the target LLM is fine-tuned with safety aligned data on these adversarial prompts. In each round, the adversarial LLM crafts better attacks on the updated target LLM, while the target LLM also improves itself through safety fine-tuning.On adversarial prompt benchmarks, the violation rate of an LLM with limited safety alignment reduces up to 84.7% after 4 rounds of MART, achieving comparable performance to LLMs with extensive adversarial prompt writing. Notably, model helpfulness on non-adversarial prompts remains stable throughout iterations, indicating the target LLM maintains strong performance on instruction following.

2023

pdf bib
Residual Prompt Tuning: improving prompt tuning with residual reparameterization
Anastasiia Razdaibiedina | Yuning Mao | Madian Khabsa | Mike Lewis | Rui Hou | Jimmy Ba | Amjad Almahairi
Findings of the Association for Computational Linguistics: ACL 2023

Prompt tuning is one of the successful approaches for parameter-efficient tuning of pre-trained language models. Despite being arguably the most parameter-efficient (tuned soft prompts constitute <0.1% of total parameters), it typically performs worse than other efficient tuning methods and is quite sensitive to hyper-parameters. In this work, we introduce Residual Prompt Tuning - a simple and efficient method that significantly improves the performance and stability of prompt tuning. We propose to reparameterize soft prompt embeddings using a shallow network with a residual connection. Our experiments show that Residual Prompt Tuning significantly outperforms prompt tuning across T5-Large, T5-Base and BERT-Base models. Notably, our method reaches +7 points improvement over prompt tuning on SuperGLUE benchmark with T5-Base model and allows to reduce the prompt length by 10 times without hurting performance. In addition, we show that our approach is robust to the choice of learning rate and prompt initialization, and is effective in few-shot settings.

pdf bib
RoAST: Robustifying Language Models via Adversarial Perturbation with Selective Training
Jaehyung Kim | Yuning Mao | Rui Hou | Hanchao Yu | Davis Liang | Pascale Fung | Qifan Wang | Fuli Feng | Lifu Huang | Madian Khabsa
Findings of the Association for Computational Linguistics: EMNLP 2023

Fine-tuning pre-trained language models (LMs) has become the de facto standard in many NLP tasks. Nevertheless, fine-tuned LMs are still prone to robustness issues, such as adversarial robustness and model calibration. Several perspectives of robustness for LMs have been studied independently, but lacking a unified consideration in multiple perspectives. In this paper, we propose Robustifying LMs via Adversarial perturbation with Selective Training (RoAST), a simple yet effective fine-tuning technique to enhance the multi-perspective robustness of LMs in a unified way. RoAST effectively incorporates two important sources for the model robustness, robustness on the perturbed inputs and generalizable knowledge in pre-trained LMs. To be specific, RoAST introduces adversarial perturbation during fine-tuning while the model parameters are selectively updated upon their relative importance to minimize unnecessary deviation. Under a unified evaluation of fine-tuned LMs by incorporating four representative perspectives of model robustness, we demonstrate the effectiveness of RoAST compared to state-of-the-art fine-tuning methods on six different types of LMs, which indicates its usefulness in practice.

pdf bib
APrompt: Attention Prompt Tuning for Efficient Adaptation of Pre-trained Language Models
Qifan Wang | Yuning Mao | Jingang Wang | Hanchao Yu | Shaoliang Nie | Sinong Wang | Fuli Feng | Lifu Huang | Xiaojun Quan | Zenglin Xu | Dongfang Liu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

With the continuous growth of large language models, the process of fine-tuning these models for new tasks has become increasingly parameter-intensive. Prompt tuning, a method that involves tuning a small set of soft prompts, has emerged as an effective and efficient approach for adapting large pre-trained language models. However, most existing prompt tuning approaches only introduce prompts at the input layer, limiting their performance and leaving large rooms for improvement. In this work, we propose a novel Attention Prompt tuning method, namely APrompt, for efficient adaptation of pre-trained language models. We first demonstrate that existing prompt tuning can be considered as a special case of attention prompt tuning. We then formally introduce APrompt, which incorporates query, key, and value prompts into the attention layer to guide the attention computation during fine-tuning. Experimental results on the SuperGLUE benchmark consistently demonstrate that our proposed approach outperforms state-of-the-art baselines and full fine-tuning method with pre-trained models at different scales. In addition, a comprehensive set of ablation studies validate the effectiveness of the prompt design, as well as the efficiency of our approach.

pdf bib
XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models
Davis Liang | Hila Gonen | Yuning Mao | Rui Hou | Naman Goyal | Marjan Ghazvininejad | Luke Zettlemoyer | Madian Khabsa
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large multilingual language models typically rely on a single vocabulary shared across 100+ languages. As these models have increased in parameter count and depth, vocabulary size has remained largely unchanged. This vocabulary bottleneck limits the representational capabilities of multilingual models like XLM-R. In this paper, we introduce a new approach for scaling to very large multilingual vocabularies by de-emphasizing token sharing between languages with little lexical overlap and assigning vocabulary capacity to achieve sufficient coverage for each individual language. Tokenizations using our vocabulary are typically more semantically meaningful and shorter compared to XLM-R. Leveraging this improved vocabulary, we train XLM-V, a multilingual language model with a one million token vocabulary. XLM-V outperforms XLM-R on every task we tested on ranging from natural language inference (XNLI), question answering (MLQA, XQuAD, TyDiQA), to named entity recognition (WikiAnn). XLM-V is particularly effective on low-resource language tasks and outperforms XLM-R by 11.2% and 5.8% absolute on MasakhaNER and Americas NLI, respectively.

pdf bib
Generating Hashtags for Short-form Videos with Guided Signals
Tiezheng Yu | Hanchao Yu | Davis Liang | Yuning Mao | Shaoliang Nie | Po-Yao Huang | Madian Khabsa | Pascale Fung | Yi-Chia Wang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Short-form video hashtag recommendation (SVHR) aims to recommend hashtags to content creators from videos and corresponding descriptions. Most prior studies regard SVHR as a classification or ranking problem and select hashtags from a set of limited candidates. However, in reality, users can create new hashtags, and trending hashtags change rapidly over time on social media. Both of these properties cannot be easily modeled with classification approaches. To bridge this gap, we formulate SVHR as a generation task that better represents how hashtags are created naturally. Additionally, we propose the Guided Generative Model (GGM) where we augment the input features by retrieving relevant hashtags from a large-scale hashtag pool as extra guidance signals. Experimental results on two short-form video datasets show that our generative models outperform strong classification baselines, and the guidance signals further boost the performance by 8.11 and 2.17 absolute ROUGE-1 scores on average, respectively. We also perform extensive analyses including human evaluation, demonstrating that our generative model can create meaningful and relevant novel hashtags while achieving state-of-the-art performance on known hashtags

2022

pdf bib
Towards a Unified Multi-Dimensional Evaluator for Text Generation
Ming Zhong | Yang Liu | Da Yin | Yuning Mao | Yizhu Jiao | Pengfei Liu | Chenguang Zhu | Heng Ji | Jiawei Han
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Multi-dimensional evaluation is the dominant paradigm for human evaluation in Natural Language Generation (NLG), i.e., evaluating the generated text from multiple explainable dimensions, such as coherence and fluency. However, automatic evaluation in NLG is still dominated by similarity-based metrics, and we lack a reliable framework for a more comprehensive evaluation of advanced models. In this paper, we propose a unified multi-dimensional evaluator UniEval for NLG. We re-frame NLG evaluation as a Boolean Question Answering (QA) task, and by guiding the model with different questions, we can use one evaluator to evaluate from multiple dimensions. Furthermore, thanks to the unified Boolean QA format, we are able to introduce an intermediate learning phase that enables UniEval to incorporate external knowledge from multiple related tasks and gain further improvement. Experiments on three typical NLG tasks show that UniEval correlates substantially better with human judgments than existing metrics. Specifically, compared to the top-performing unified evaluators, UniEval achieves a 23% higher correlation on text summarization, and over 43% on dialogue response generation. Also, UniEval demonstrates a strong zero-shot learning ability for unseen evaluation dimensions and tasks. Source code, data, and all pre-trained evaluators are available at https://github.com/maszhongming/UniEval.

pdf bib
CiteSum: Citation Text-guided Scientific Extreme Summarization and Domain Adaptation with Limited Supervision
Yuning Mao | Ming Zhong | Jiawei Han
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Scientific extreme summarization (TLDR) aims to form ultra-short summaries of scientific papers. Previous efforts on curating scientific TLDR datasets failed to scale up due to the heavy human annotation and domain expertise required. In this paper, we propose a simple yet effective approach to automatically extracting TLDR summaries for scientific papers from their citation texts. Based on the proposed approach, we create a new benchmark CiteSum without human annotation, which is around 30 times larger than the previous human-curated dataset SciTLDR. We conduct a comprehensive analysis of CiteSum, examining its data characteristics and establishing strong baselines. We further demonstrate the usefulness of CiteSum by adapting models pre-trained on CiteSum (named CITES) to new tasks and domains with limited supervision. For scientific extreme summarization, CITES outperforms most fully-supervised methods on SciTLDR without any fine-tuning and obtains state-of-the-art results with only 128 examples. For news extreme summarization, CITES achieves significant gains on XSum over its base model (not pre-trained on CiteSum), e.g., +7.2 ROUGE-1 zero-shot performance and state-of-the-art few-shot performance. For news headline generation, CITES performs the best among unsupervised and zero-shot methods on Gigaword.

pdf bib
Eider: Empowering Document-level Relation Extraction with Efficient Evidence Extraction and Inference-stage Fusion
Yiqing Xie | Jiaming Shen | Sha Li | Yuning Mao | Jiawei Han
Findings of the Association for Computational Linguistics: ACL 2022

Document-level relation extraction (DocRE) aims to extract semantic relations among entity pairs in a document. Typical DocRE methods blindly take the full document as input, while a subset of the sentences in the document, noted as the evidence, are often sufficient for humans to predict the relation of an entity pair. In this paper, we propose an evidence-enhanced framework, Eider, that empowers DocRE by efficiently extracting evidence and effectively fusing the extracted evidence in inference. We first jointly train an RE model with a lightweight evidence extraction model, which is efficient in both memory and runtime. Empirically, even training the evidence model on silver labels constructed by our heuristic rules can lead to better RE performance. We further design a simple yet effective inference process that makes RE predictions on both extracted evidence and the full document, then fuses the predictions through a blending layer. This allows Eider to focus on important sentences while still having access to the complete information in the document. Extensive experiments show that Eider outperforms state-of-the-art methods on three benchmark datasets (e.g., by 1.37/1.26 Ign F1/F1 on DocRED).

pdf bib
Unsupervised Multi-Granularity Summarization
Ming Zhong | Yang Liu | Suyu Ge | Yuning Mao | Yizhu Jiao | Xingxing Zhang | Yichong Xu | Chenguang Zhu | Michael Zeng | Jiawei Han
Findings of the Association for Computational Linguistics: EMNLP 2022

Text summarization is a user-preference based task, i.e., for one document, users often have different priorities for the summary. As a key aspect of customization in summarization, granularity is used to measure the semantic coverage between the summary and source document. However, developing systems that can generate summaries with customizable semantic coverage is still an under-explored topic. In this paper, we propose the first unsupervised multi-granularity summarization framework, GranuSum. We take events as the basic semantic units of the source documents and propose to rank these events by their salience. We also develop a model to summarize input documents with given events as anchors and hints. By inputting different numbers of events, GranuSum is capable of producing multi-granular summaries in an unsupervised manner. Meanwhile, we annotate a new benchmark GranuDUC that contains multiple summaries at different granularities for each document cluster. Experimental results confirm the substantial superiority of GranuSum on multi-granularity summarization over strong baselines. Furthermore, by exploiting the event information, GranuSum also exhibits state-of-the-art performance under the conventional unsupervised abstractive setting.

pdf bib
UniPELT: A Unified Framework for Parameter-Efficient Language Model Tuning
Yuning Mao | Lambert Mathias | Rui Hou | Amjad Almahairi | Hao Ma | Jiawei Han | Scott Yih | Madian Khabsa
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent parameter-efficient language model tuning (PELT) methods manage to match the performance of fine-tuning with much fewer trainable parameters and perform especially well when training data is limited. However, different PELT methods may perform rather differently on the same task, making it nontrivial to select the most appropriate method for a specific task, especially considering the fast-growing number of new PELT methods and tasks. In light of model diversity and the difficulty of model selection, we propose a unified framework, UniPELT, which incorporates different PELT methods as submodules and learns to activate the ones that best suit the current data or task setup via gating mechanism. On the GLUE benchmark, UniPELT consistently achieves 1 4% gains compared to the best individual PELT method that it incorporates and even outperforms fine-tuning under different setups. Moreover, UniPELT generally surpasses the upper bound that takes the best performance of all its submodules used individually on each task, indicating that a mixture of multiple PELT methods may be inherently more effective than single methods.

pdf bib
SAIS: Supervising and Augmenting Intermediate Steps for Document-Level Relation Extraction
Yuxin Xiao | Zecheng Zhang | Yuning Mao | Carl Yang | Jiawei Han
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Stepping from sentence-level to document-level, the research on relation extraction (RE) confronts increasing text length and more complicated entity interactions. Consequently, it is more challenging to encode the key information sources—relevant contexts and entity types. However, existing methods only implicitly learn to model these critical information sources while being trained for RE. As a result, they suffer the problems of ineffective supervision and uninterpretable model predictions. In contrast, we propose to explicitly teach the model to capture relevant contexts and entity types by supervising and augmenting intermediate steps (SAIS) for RE. Based on a broad spectrum of carefully designed tasks, our proposed SAIS method not only extracts relations of better quality due to more effective supervision, but also retrieves the corresponding supporting evidence more accurately so as to enhance interpretability. By assessing model uncertainty, SAIS further boosts the performance via evidence-based data augmentation and ensemble inference while reducing the computational cost. Eventually, SAIS delivers state-of-the-art RE results on three benchmarks (DocRED, CDR, and GDA) and outperforms the runner-up by 5.04% relatively in F1 score in evidence retrieval on DocRED.

2021

pdf bib
Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation
Yuning Mao | Wenchang Ma | Deren Lei | Jiawei Han | Xiang Ren
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Prior studies on text-to-text generation typically assume that the model could figure out what to attend to in the input and what to include in the output via seq2seq learning, with only the parallel training data and no additional guidance. However, it remains unclear whether current models can preserve important concepts in the source input, as seq2seq learning does not have explicit focus on the concepts and commonly used evaluation metrics also treat them equally important as other tokens. In this paper, we present a systematic analysis that studies whether current seq2seq models, especially pre-trained language models, are good enough for preserving important input concepts and to what extent explicitly guiding generation with the concepts as lexical constraints is beneficial. We answer the above questions by conducting extensive analytical experiments on four representative text-to-text generation tasks. Based on the observations, we then propose a simple yet effective framework to automatically extract, denoise, and enforce important input concepts as lexical constraints. This new method performs comparably or better than its unconstrained counterpart on automatic metrics, demonstrates higher coverage for concept preservation, and receives better ratings in the human evaluation. Our code is available at https://github.com/morningmoni/EDE.

pdf bib
Reader-Guided Passage Reranking for Open-Domain Question Answering
Yuning Mao | Pengcheng He | Xiaodong Liu | Yelong Shen | Jianfeng Gao | Jiawei Han | Weizhu Chen
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Generation-Augmented Retrieval for Open-Domain Question Answering
Yuning Mao | Pengcheng He | Xiaodong Liu | Yelong Shen | Jianfeng Gao | Jiawei Han | Weizhu Chen
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

We propose Generation-Augmented Retrieval (GAR) for answering open-domain questions, which augments a query through text generation of heuristically discovered relevant contexts without external resources as supervision. We demonstrate that the generated contexts substantially enrich the semantics of the queries and GAR with sparse representations (BM25) achieves comparable or better performance than state-of-the-art dense retrieval methods such as DPR. We show that generating diverse contexts for a query is beneficial as fusing their results consistently yields better retrieval accuracy. Moreover, as sparse and dense representations are often complementary, GAR can be easily combined with DPR to achieve even better performance. GAR achieves state-of-the-art performance on Natural Questions and TriviaQA datasets under the extractive QA setup when equipped with an extractive reader, and consistently outperforms other retrieval methods when the same generative reader is used.

2020

pdf bib
Facet-Aware Evaluation for Extractive Summarization
Yuning Mao | Liyuan Liu | Qi Zhu | Xiang Ren | Jiawei Han
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Commonly adopted metrics for extractive summarization focus on lexical overlap at the token level. In this paper, we present a facet-aware evaluation setup for better assessment of the information coverage in extracted summaries. Specifically, we treat each sentence in the reference summary as a facet, identify the sentences in the document that express the semantics of each facet as support sentences of the facet, and automatically evaluate extractive summarization methods by comparing the indices of extracted sentences and support sentences of all the facets in the reference summary. To facilitate this new evaluation setup, we construct an extractive version of the CNN/Daily Mail dataset and perform a thorough quantitative investigation, through which we demonstrate that facet-aware evaluation manifests better correlation with human judgment than ROUGE, enables fine-grained evaluation as well as comparative analysis, and reveals valuable insights of state-of-the-art summarization methods. Data can be found at https://github.com/morningmoni/FAR.

pdf bib
Multi-document Summarization with Maximal Marginal Relevance-guided Reinforcement Learning
Yuning Mao | Yanru Qu | Yiqing Xie | Xiang Ren | Jiawei Han
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

While neural sequence learning methods have made significant progress in single-document summarization (SDS), they produce unsatisfactory results on multi-document summarization (MDS). We observe two major challenges when adapting SDS advances to MDS: (1) MDS involves larger search space and yet more limited training data, setting obstacles for neural methods to learn adequate representations; (2) MDS needs to resolve higher information redundancy among the source documents, which SDS methods are less effective to handle. To close the gap, we present RL-MMR, Maximal Margin Relevance-guided Reinforcement Learning for MDS, which unifies advanced neural SDS methods and statistical measures used in classical MDS. RL-MMR casts MMR guidance on fewer promising candidates, which restrains the search space and thus leads to better representation learning. Additionally, the explicit redundancy measure in MMR helps the neural representation of the summary to better capture redundancy. Extensive experiments demonstrate that RL-MMR achieves state-of-the-art performance on benchmark MDS datasets. In particular, we show the benefits of incorporating MMR into end-to-end learning when adapting SDS to MDS in terms of both learning effectiveness and efficiency.

pdf bib
Learning Collaborative Agents with Rule Guidance for Knowledge Graph Reasoning
Deren Lei | Gangrong Jiang | Xiaotao Gu | Kexuan Sun | Yuning Mao | Xiang Ren
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Walk-based models have shown their advantages in knowledge graph (KG) reasoning by achieving decent performance while providing interpretable decisions. However, the sparse reward signals offered by the KG during a traversal are often insufficient to guide a sophisticated walk-based reinforcement learning (RL) model. An alternate approach is to use traditional symbolic methods (e.g., rule induction), which achieve good performance but can be hard to generalize due to the limitation of symbolic representation. In this paper, we propose RuleGuider, which leverages high-quality rules generated by symbolic-based methods to provide reward supervision for walk-based agents. Experiments on benchmark datasets shows that RuleGuider clearly improves the performance of walk-based models without losing interpretability.

2019

pdf bib
Hierarchical Text Classification with Reinforced Label Assignment
Yuning Mao | Jingjing Tian | Jiawei Han | Xiang Ren
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

While existing hierarchical text classification (HTC) methods attempt to capture label hierarchies for model training, they either make local decisions regarding each label or completely ignore the hierarchy information during inference. To solve the mismatch between training and inference as well as modeling label dependencies in a more principled way, we formulate HTC as a Markov decision process and propose to learn a Label Assignment Policy via deep reinforcement learning to determine where to place an object and when to stop the assignment process. The proposed method, HiLAP, explores the hierarchy during both training and inference time in a consistent manner and makes inter-dependent decisions. As a general framework, HiLAP can incorporate different neural encoders as base models for end-to-end training. Experiments on five public datasets and four base models show that HiLAP yields an average improvement of 33.4% in Macro-F1 over flat classifiers and outperforms state-of-the-art HTC methods by a large margin. Data and code can be found at https://github.com/morningmoni/HiLAP.

2018

pdf bib
End-to-End Reinforcement Learning for Automatic Taxonomy Induction
Yuning Mao | Xiang Ren | Jiaming Shen | Xiaotao Gu | Jiawei Han
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present a novel end-to-end reinforcement learning approach to automatic taxonomy induction from a set of terms. While prior methods treat the problem as a two-phase task (i.e.,, detecting hypernymy pairs followed by organizing these pairs into a tree-structured hierarchy), we argue that such two-phase methods may suffer from error propagation, and cannot effectively optimize metrics that capture the holistic structure of a taxonomy. In our approach, the representations of term pairs are learned using multiple sources of information and used to determine which term to select and where to place it on the taxonomy via a policy network. All components are trained in an end-to-end manner with cumulative rewards, measured by a holistic tree metric over the training taxonomies. Experiments on two public datasets of different domains show that our approach outperforms prior state-of-the-art taxonomy induction methods up to 19.6% on ancestor F1.