Yunyan Zhang


2024

pdf bib
Alignment before Awareness: Towards Visual Question Localized-Answering in Robotic Surgery via Optimal Transport and Answer Semantics
Zhihong Zhu | Yunyan Zhang | Xuxin Cheng | Zhiqi Huang | Derong Xu | Xian Wu | Yefeng Zheng
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

The visual question localized-answering (VQLA) system has garnered increasing attention due to its potential as a knowledgeable assistant in surgical education. Apart from providing text-based answers, VQLA can also pinpoint the specific region of interest for better surgical scene understanding. Although recent Transformer-based models for VQLA have obtained promising results, they (1) conduct vanilla text-to-image cross attention, leading to unidirectional and coarse-grained alignment; (2) ignore exploiting the semantics of answers to further boost performance. In this paper, we propose a novel model termed OTAS, which first introduces optimal transport to achieve bidirectional and fine-grained alignment between images and questions, enabling more precise localization. Besides, OTAS incorporates a set of learnable candidate answer embeddings to query the probability of each answer class for a given image-question pair. Through Transformer attention, the candidate answer embeddings interact with the fused features of the image-question pair to make the answer decision. Extensive experiments on two widely-used benchmark datasets demonstrate the superiority of our model over state-of-the-art methods.

2023

pdf bib
CSS: A Large-scale Cross-schema Chinese Text-to-SQL Medical Dataset
Hanchong Zhang | Jieyu Li | Lu Chen | Ruisheng Cao | Yunyan Zhang | Yu Huang | Yefeng Zheng | Kai Yu
Findings of the Association for Computational Linguistics: ACL 2023

The cross-domain text-to-SQL task aims to build a system that can parse user questions into SQL on complete unseen databases, and the single-domain text-to-SQL task evaluates the performance on identical databases. Both of these setups confront unavoidable difficulties in real-world applications. To this end, we introduce the cross-schema text-to-SQL task, where the databases of evaluation data are different from that in the training data but come from the same domain. Furthermore, we present CSS, a large-scale CrosS-Schema Chinese text-to-SQL dataset, to carry on corresponding studies. CSS originally consisted of 4,340 question/SQL pairs across 2 databases. In order to generalize models to different medical systems, we extend CSS and create 19 new databases along with 29,280 corresponding dataset examples. Moreover, CSS is also a large corpus for single-domain Chinese text-to-SQL studies. We present the data collection approach and a series of analyses of the data statistics. To show the potential and usefulness of CSS, benchmarking baselines have been conducted and reported. Our dataset is publicly available at https://huggingface.co/datasets/zhanghanchong/css.

2021

pdf bib
CONNER: A Cascade Count and Measurement Extraction Tool for Scientific Discourse
Jiarun Cao | Yuejia Xiang | Yunyan Zhang | Zhiyuan Qi | Xi Chen | Yefeng Zheng
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This paper presents our wining contribution to SemEval 2021 Task 8: MeasEval. The purpose of this task is identifying the counts and measurements from clinical scientific discourse, including quantities, entities, properties, qualifiers, units, modifiers, and their mutual relations. This task can be induced to a joint entity and relation extraction problem. Accordingly, we propose CONNER, a cascade count and measurement extraction tool that can identify entities and the corresponding relations in a two-step pipeline model. We provide a detailed description of the proposed model hereinafter. Furthermore, the impact of the essential modules and our in-process technical schemes are also investigated.

pdf bib
PRGC: Potential Relation and Global Correspondence Based Joint Relational Triple Extraction
Hengyi Zheng | Rui Wen | Xi Chen | Yifan Yang | Yunyan Zhang | Ziheng Zhang | Ningyu Zhang | Bin Qin | Xu Ming | Yefeng Zheng
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Joint extraction of entities and relations from unstructured texts is a crucial task in information extraction. Recent methods achieve considerable performance but still suffer from some inherent limitations, such as redundancy of relation prediction, poor generalization of span-based extraction and inefficiency. In this paper, we decompose this task into three subtasks, Relation Judgement, Entity Extraction and Subject-object Alignment from a novel perspective and then propose a joint relational triple extraction framework based on Potential Relation and Global Correspondence (PRGC). Specifically, we design a component to predict potential relations, which constrains the following entity extraction to the predicted relation subset rather than all relations; then a relation-specific sequence tagging component is applied to handle the overlapping problem between subjects and objects; finally, a global correspondence component is designed to align the subject and object into a triple with low-complexity. Extensive experiments show that PRGC achieves state-of-the-art performance on public benchmarks with higher efficiency and delivers consistent performance gain on complex scenarios of overlapping triples. The source code has been submitted as the supplementary material and will be made publicly available after the blind review.

pdf bib
A Three-step Method for Multi-Hop Inference Explanation Regeneration
Yuejia Xiang | Yunyan Zhang | Xiaoming Shi | Bo Liu | Wandi Xu | Xi Chen
Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15)

Multi-hop inference for explanation generation is to combine two or more facts to make an inference. The task focuses on generating explanations for elementary science questions. In the task, the relevance between the explanations and the QA pairs is of vital importance. To address the task, a three-step framework is proposed. Firstly, vector distance between two texts is utilized to recall the top-K relevant explanations for each question, reducing the calculation consumption. Then, a selection module is employed to choose those most relative facts in an autoregressive manner, giving a preliminary order for the retrieved facts. Thirdly, we adopt a re-ranking module to re-rank the retrieved candidate explanations with relevance between each fact and the QA pairs. Experimental results illustrate the effectiveness of the proposed framework with an improvement of 39.78% in NDCG over the official baseline.