Zae Myung Kim


2024

pdf bib
Benchmarking Cognitive Biases in Large Language Models as Evaluators
Ryan Koo | Minhwa Lee | Vipul Raheja | Jong Inn Park | Zae Myung Kim | Dongyeop Kang
Findings of the Association for Computational Linguistics ACL 2024

Large Language Models (LLMs) have recently been shown to be effective as automatic evaluators with simple prompting and in-context learning. In this work, we assemble 16 LLMs encompassing four different size ranges and evaluate their output responses by preference ranking from the other LLMs as evaluators, such as System Star is better than System Square. We then evaluate the quality of ranking outputs introducing the Cognitive Bias Benchmark for LLMs as Evaluators (CoBBLer), a benchmark to measure six different cognitive biases in LLM evaluation outputs, such as the Egocentric bias where a model prefers to rank its own outputs highly in evaluation. We find that LLMs are biased text quality evaluators, exhibiting strong indications on our bias benchmark (40% of comparisons made by all models) within each of their evaluations that question their robustness as evaluators. Furthermore, we examine the correlation between human and machine preferences and calculate the average Rank-Biased Overlap (RBO) score to be 44%, indicating that machine preferences are misaligned with humans. According to our findings, LLMs may still be unable to be utilized for automatic annotation aligned with human preferences.

pdf bib
Threads of Subtlety: Detecting Machine-Generated Texts Through Discourse Motifs
Zae Myung Kim | Kwang Lee | Preston Zhu | Vipul Raheja | Dongyeop Kang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

With the advent of large language models (LLM), the line between human-crafted and machine-generated texts has become increasingly blurred. This paper delves into the inquiry of identifying discernible and unique linguistic properties in texts that were written by humans, particularly uncovering the underlying discourse structures of texts beyond their surface structures. Introducing a novel methodology, we leverage hierarchical parse trees and recursive hypergraphs to unveil distinctive discourse patterns in texts produced by both LLMs and humans. Empirical findings demonstrate that, although both LLMs and humans generate distinct discourse patterns influenced by specific domains, human-written texts exhibit more structural variability, reflecting the nuanced nature of human writing in different domains. Notably, incorporating hierarchical discourse features enhances binary classifiers’ overall performance in distinguishing between human-written and machine-generated texts, even on out-of-distribution and paraphrased samples. This underscores the significance of incorporating hierarchical discourse features in the analysis of text patterns. The code and dataset will be available at [TBA].

2023

pdf bib
An Analysis of Reader Engagement in Literary Fiction through Eye Tracking and Linguistic Features
Rose Neis | Karin De Langis | Zae Myung Kim | Dongyeop Kang
Proceedings of the 5th Workshop on Narrative Understanding

Capturing readers’ engagement in fiction is a challenging but important aspect of narrative understanding. In this study, we collected 23 readers’ reactions to 2 short stories through eye tracking, sentence-level annotations, and an overall engagement scale survey. We analyzed the significance of various qualities of the text in predicting how engaging a reader is likely to find it. As enjoyment of fiction is highly contextual, we also investigated individual differences in our data. Furthering our understanding of what captivates readers in fiction will help better inform models used in creative narrative generation and collaborative writing tools.

2022

pdf bib
Understanding Iterative Revision from Human-Written Text
Wanyu Du | Vipul Raheja | Dhruv Kumar | Zae Myung Kim | Melissa Lopez | Dongyeop Kang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Writing is, by nature, a strategic, adaptive, and, more importantly, an iterative process. A crucial part of writing is editing and revising the text. Previous works on text revision have focused on defining edit intention taxonomies within a single domain or developing computational models with a single level of edit granularity, such as sentence-level edits, which differ from human’s revision cycles. This work describes IteraTeR: the first large-scale, multi-domain, edit-intention annotated corpus of iteratively revised text. In particular, IteraTeR is collected based on a new framework to comprehensively model the iterative text revisions that generalizes to a variety of domains, edit intentions, revision depths, and granularities. When we incorporate our annotated edit intentions, both generative and action-based text revision models significantly improve automatic evaluations. Through our work, we better understand the text revision process, making vital connections between edit intentions and writing quality, enabling the creation of diverse corpora to support computational modeling of iterative text revisions.

pdf bib
Improving Iterative Text Revision by Learning Where to Edit from Other Revision Tasks
Zae Myung Kim | Wanyu Du | Vipul Raheja | Dhruv Kumar | Dongyeop Kang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Iterative text revision improves text quality by fixing grammatical errors, rephrasing for better readability or contextual appropriateness, or reorganizing sentence structures throughout a document.Most recent research has focused on understanding and classifying different types of edits in the iterative revision process from human-written text instead of building accurate and robust systems for iterative text revision.In this work, we aim to build an end-to-end text revision system that can iteratively generate helpful edits by explicitly detecting editable spans (where-to-edit) with their corresponding edit intents and then instructing a revision model to revise the detected edit spans.Leveraging datasets from other related text editing NLP tasks, combined with the specification of editable spans, leads our system to more accurately model the process of iterative text refinement, as evidenced by empirical results and human evaluations.Our system significantly outperforms previous baselines on our text revision tasks and other standard text revision tasks, including grammatical error correction, text simplification, sentence fusion, and style transfer.Through extensive qualitative and quantitative analysis, we make vital connections between edit intentions and writing quality, and better computational modeling of iterative text revisions.

pdf bib
Read, Revise, Repeat: A System Demonstration for Human-in-the-loop Iterative Text Revision
Wanyu Du | Zae Myung Kim | Vipul Raheja | Dhruv Kumar | Dongyeop Kang
Proceedings of the First Workshop on Intelligent and Interactive Writing Assistants (In2Writing 2022)

Revision is an essential part of the human writing process. It tends to be strategic, adaptive, and, more importantly, iterative in nature. Despite the success of large language models on text revision tasks, they are limited to non-iterative, one-shot revisions. Examining and evaluating the capability of large language models for making continuous revisions and collaborating with human writers is a critical step towards building effective writing assistants. In this work, we present a human-in-the-loop iterative text revision system, Read, Revise, Repeat (R3), which aims at achieving high quality text revisions with minimal human efforts by reading model-generated revisions and user feedbacks, revising documents, and repeating human-machine interactions. In R3, a text revision model provides text editing suggestions for human writers, who can accept or reject the suggested edits. The accepted edits are then incorporated into the model for the next iteration of document revision. Writers can therefore revise documents iteratively by interacting with the system and simply accepting/rejecting its suggested edits until the text revision model stops making further revisions or reaches a predefined maximum number of revisions. Empirical experiments show that R3 can generate revisions with comparable acceptance rate to human writers at early revision depths, and the human-machine interaction can get higher quality revisions with fewer iterations and edits. The collected human-model interaction dataset and system code are available at https://github.com/vipulraheja/IteraTeR. Our system demonstration is available at https://youtu.be/lK08tIpEoaE.

2021

pdf bib
Visualizing Cross‐Lingual Discourse Relations in Multilingual TED Corpora
Zae Myung Kim | Vassilina Nikoulina | Dongyeop Kang | Didier Schwab | Laurent Besacier
Proceedings of the 2nd Workshop on Computational Approaches to Discourse

This paper presents an interactive data dashboard that provides users with an overview of the preservation of discourse relations among 28 language pairs. We display a graph network depicting the cross-lingual discourse relations between a pair of languages for multilingual TED talks and provide a search function to look for sentences with specific keywords or relation types, facilitating ease of analysis on the cross-lingual discourse relations.

pdf bib
Do Multilingual Neural Machine Translation Models Contain Language Pair Specific Attention Heads?
Zae Myung Kim | Laurent Besacier | Vassilina Nikoulina | Didier Schwab
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2020

pdf bib
PATQUEST: Papago Translation Quality Estimation
Yujin Baek | Zae Myung Kim | Jihyung Moon | Hyunjoong Kim | Eunjeong Park
Proceedings of the Fifth Conference on Machine Translation

This paper describes the system submitted by Papago team for the quality estimation task at WMT 2020. It proposes two key strategies for quality estimation: (1) task-specific pretraining scheme, and (2) task-specific data augmentation. The former focuses on devising learning signals for pretraining that are closely related to the downstream task. We also present data augmentation techniques that simulate the varying levels of errors that the downstream dataset may contain. Thus, our PATQUEST models are exposed to erroneous translations in both stages of task-specific pretraining and finetuning, effectively enhancing their generalization capability. Our submitted models achieve significant improvement over the baselines for Task 1 (Sentence-Level Direct Assessment; EN-DE only), and Task 3 (Document-Level Score).

pdf bib
A Multilingual Neural Machine Translation Model for Biomedical Data
Alexandre Bérard | Zae Myung Kim | Vassilina Nikoulina | Eunjeong Lucy Park | Matthias Gallé
Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020

We release a multilingual neural machine translation model, which can be used to translate text in the biomedical domain. The model can translate from 5 languages (French, German, Italian, Korean and Spanish) into English. It is trained with large amounts of generic and biomedical data, using domain tags. Our benchmarks show that it performs near state-of-the-art both on news (generic domain) and biomedical test sets, and that it outperforms the existing publicly released models. We believe that this release will help the large-scale multilingual analysis of the digital content of the COVID-19 crisis and of its effects on society, economy, and healthcare policies. We also release a test set of biomedical text for Korean-English. It consists of 758 sentences from official guidelines and recent papers, all about COVID-19.

2015

pdf bib
Temporal Information Extraction from Korean Texts
Young-Seob Jeong | Zae Myung Kim | Hyun-Woo Do | Chae-Gyun Lim | Ho-Jin Choi
Proceedings of the Nineteenth Conference on Computational Natural Language Learning