Zecheng Tang


2024

pdf bib
Rethinking Negative Instances for Generative Named Entity Recognition
Yuyang Ding | Juntao Li | Pinzheng Wang | Zecheng Tang | Yan Bowen | Min Zhang
Findings of the Association for Computational Linguistics ACL 2024

Large Language Models (LLMs) have demonstrated impressive capabilities for generalizing in unseen tasks. In the Named Entity Recognition (NER) task, recent advancements have seen the remarkable improvement of LLMs in a broad range of entity domains via instruction tuning, by adopting entity-centric schema. In this work, we explore the potential enhancement of the existing methods by incorporating negative instances into training. Our experiments reveal that negative instances contribute to remarkable improvements by (1) introducing contextual information, and (2) clearly delineating label boundaries. Furthermore, we introduce an efficient longest common subsequence (LCS) matching algorithm, which is tailored to transform unstructured predictions into structured entities. By integrating these components, we present GNER, a Generative NER system that shows improved zero-shot performance across unseen entity domains. Our comprehensive evaluation illustrates our system’s superiority, surpassing state-of-the-art (SoTA) methods by 9 F1 score in zero-shot evaluation.

2023

pdf bib
Open-ended Long Text Generation via Masked Language Modeling
Xiaobo Liang | Zecheng Tang | Juntao Li | Min Zhang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Pre-trained autoregressive (AR) language models such as BART and GPTs have dominated OPen-ended Long Text Generation (Open-LTG).However, the AR nature will decrease the inference efficiency along with the increase of generation length, which hinder their application in Open-LTG.To improve inference efficiency, we alternatively explore the potential of the pre-trained masked language models (MLMs) along with a representative iterative non-autoregressive (NAR) decoding strategy for Open-LTG.Our preliminary study shows that pre-trained MLMs can merely generate short text and will collapse for long text modeling. To enhance the long text generation capability of MLMs, we introduce two simple yet effective strategies for the iterative NAR model: dynamic sliding window attention (DSWA) and linear temperature decay (LTD). It can alleviate long-distance collapse problems and achieve longer text generation with a flexible trade-off between performance and inference speedup. Experiments on the storytelling and multi-paragraph opinionated article writing tasks show that pre-trained MLMs can achieve more than 3 × 13 × speedup with better performance than strong AR models.

pdf bib
Can Diffusion Model Achieve Better Performance in Text Generation ? Bridging the Gap between Training and Inference !
Zecheng Tang | Pinzheng Wang | Keyan Zhou | Juntao Li | Ziqiang Cao | Min Zhang
Findings of the Association for Computational Linguistics: ACL 2023

Diffusion models have been successfully adapted to text generation tasks by mapping the discrete text into the continuous space. However, there exist nonnegligible gaps between training and inference, owing to the absence of the forward process during inference. Thus, the model only predicts based on the previously generated reverse noise rather than the noise computed by the forward process. Besides, the widely-used downsampling strategy in speeding up the inference will cause the mismatch of diffusion trajectories between training and inference. To understand and mitigate the above two types of training-inference discrepancies, we launch a thorough preliminary study. Based on our observations, we propose two simple yet effective methods to bridge the gaps mentioned above, named Distance Penalty and Adaptive Decay Sampling. Extensive experiments on 6 generation tasks confirm the superiority of our methods, which can achieve 100× → 200× speedup with better performance. Our code will be released at https://github.com/CODINNLG/Bridge_Gap_Diffusion.

2022

pdf bib
Improving Temporal Generalization of Pre-trained Language Models with Lexical Semantic Change
Zhaochen Su | Zecheng Tang | Xinyan Guan | Lijun Wu | Min Zhang | Juntao Li
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Recent research has revealed that neural language models at scale suffer from poor temporal generalization capability, i.e., language model pre-trained on static data from past years performs worse over time on emerging data. Existing methods mainly perform continual training to mitigate such a misalignment. While effective to some extent but is far from being addressed on both the language modeling and downstream tasks. In this paper, we empirically observe that temporal generalization is closely affiliated with lexical semantic change, which is one of the essential phenomena of natural languages. Based on this observation, we propose a simple yet effective lexical-level masking strategy to post-train a converged language model. Experiments on two pre-trained language models, two different classification tasks, and four benchmark datasets demonstrate the effectiveness of our proposed method over existing temporal adaptation methods, i.e., continual training with new data. Our code is available at https://github.com/zhaochen0110/LMLM.

2021

pdf bib
基于字词粒度噪声数据增强的中文语法纠错(Chinese Grammatical Error Correction enhanced by Data Augmentation from Word and Character Levels)
Zecheng Tang (汤泽成) | Yixin Ji (纪一心) | Yibo Zhao (赵怡博) | Junhui Li (李军辉)
Proceedings of the 20th Chinese National Conference on Computational Linguistics

语法纠错是自然语言处理领域的热门任务之一,其目的是将错误的句子修改为正确的句子。为了缓解中文训练语料不足的问题,本文从数据增强的角度出发,提出一种新颖的扩充和增强数据的方法。具体地,为了使模型能更好地获取不同类型和不同粒度的错误,本文首先对语法纠错中出现的错误进行了字和词粒度的分类,在此基础上提出了融合字词粒度噪声的数据增强方法,以此获得大规模且质量较高的错误数据集。基于NLPCC2018共享任务的实验结果表明,本文提出的融合字词粒度加噪方法能够显著提升模型的性能,在该数据集上达到了最优的性能。最后,本文分析了错误类型和数据规模对中文语法纠错模型性能的影响。