2024
pdf
bib
abs
ConstraintChecker: A Plugin for Large Language Models to Reason on Commonsense Knowledge Bases
Quyet V. Do
|
Tianqing Fang
|
Shizhe Diao
|
Zhaowei Wang
|
Yangqiu Song
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)
Reasoning over Commonsense Knowledge Bases (CSKB), i.e. CSKB reasoning, has been explored as a way to acquire new commonsense knowledge based on reference knowledge in the original CSKBs and external prior knowledge.Despite the advancement of Large Language Models (LLM) and prompt engineering techniques in various reasoning tasks, they still struggle to deal with CSKB reasoning.One of the problems is that it is hard for them to acquire explicit relational constraints in CSKBs from only in-context exemplars, due to a lack of symbolic reasoning capabilities (CITATION).To this end, we proposed **ConstraintChecker**, a plugin over prompting techniques to provide and check explicit constraints.When considering a new knowledge instance, ConstraintChecker employs a rule-based module to produce a list of constraints, then it uses a zero-shot learning module to check whether this knowledge instance satisfies all constraints.The acquired constraint-checking result is then aggregated with the output of the main prompting technique to produce the final output.Experimental results on CSKB Reasoning benchmarks demonstrate the effectiveness of our method by bringing consistent improvements over all prompting methods.
pdf
bib
abs
Getting Sick After Seeing a Doctor? Diagnosing and Mitigating Knowledge Conflicts in Event Temporal Reasoning
Tianqing Fang
|
Zhaowei Wang
|
Wenxuan Zhou
|
Hongming Zhang
|
Yangqiu Song
|
Muhao Chen
Findings of the Association for Computational Linguistics: NAACL 2024
Event temporal reasoning aims at identifying the temporal relations between two or more events from narratives. However, knowledge conflicts arise when there is a mismatch between the actual temporal relations of events in the context and the prior knowledge or biases learned by the model. In this paper, we propose to detect knowledge-conflict examples in event temporal reasoning using bias indicators, which include event relation prior bias, tense bias, narrative bias, and dependency bias. We define conflict examples as those where event relations are opposite to biased or prior relations. To mitigate event-related knowledge conflicts, we introduce a Counterfactual Data Augmentation (CDA) based method that can be applied to both Pre-trained Language Models (PLMs) and Large Language Models (LLMs) either as additional training data or demonstrations for In- Context Learning. Experiments suggest both PLMs and LLMs suffer from knowledge conflicts in event temporal reasoning, and CDA has the potential for reducing hallucination and improving model performance.
pdf
bib
abs
AbsPyramid: Benchmarking the Abstraction Ability of Language Models with a Unified Entailment Graph
Zhaowei Wang
|
Haochen Shi
|
Weiqi Wang
|
Tianqing Fang
|
Hongming Zhang
|
Sehyun Choi
|
Xin Liu
|
Yangqiu Song
Findings of the Association for Computational Linguistics: NAACL 2024
Cognitive research indicates that abstraction ability is essential in human intelligence, which remains under-explored in language models. In this paper, we present AbsPyramid, a unified entailment graph of 221K textual descriptions of abstraction knowledge. While existing resources only touch nouns or verbs within simplified events or specific domains, AbsPyramid collects abstract knowledge for three components of diverse events to comprehensively evaluate the abstraction ability of language models in the open domain. Experimental results demonstrate that current LLMs face challenges comprehending abstraction knowledge in zero-shot and few-shot settings. By training on our rich abstraction knowledge, we find LLMs can acquire basic abstraction abilities and generalize to unseen events. In the meantime, we empirically show that our benchmark is comprehensive to enhance LLMs across two previous abstraction tasks.
pdf
bib
abs
AbsInstruct: Eliciting Abstraction Ability from LLMs through Explanation Tuning with Plausibility Estimation
Zhaowei Wang
|
Wei Fan
|
Qing Zong
|
Hongming Zhang
|
Sehyun Choi
|
Tianqing Fang
|
Xin Liu
|
Yangqiu Song
|
Ginny Wong
|
Simon See
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Abstraction ability is crucial in human intelligence, which can also benefit various tasks in NLP study. Existing work shows that LLMs are deficient in abstract ability, and how to improve it remains unexplored. In this work, we design the framework AbsInstruct to enhance LLMs’ abstraction ability through instruction tuning. The framework builds instructions with in-depth explanations to assist LLMs in capturing the underlying rationale of abstraction. Meanwhile, we introduce a plausibility estimator to select instructions that are more consistent with the abstraction knowledge of LLMs to be aligned. Then, our framework combines abstraction instructions with general-purpose ones to build a hybrid dataset. Extensive experiments and analyses demonstrate that our framework can considerably enhance LLMs’ abstraction ability with strong generalization performance while maintaining their general instruction-following abilities.
pdf
bib
abs
CANDLE: Iterative Conceptualization and Instantiation Distillation from Large Language Models for Commonsense Reasoning
Weiqi Wang
|
Tianqing Fang
|
Chunyang Li
|
Haochen Shi
|
Wenxuan Ding
|
Baixuan Xu
|
Zhaowei Wang
|
Jiaxin Bai
|
Xin Liu
|
Cheng Jiayang
|
Chunkit Chan
|
Yangqiu Song
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The sequential process of conceptualization and instantiation is essential to generalizable commonsense reasoning as it allows the application of existing knowledge to unfamiliar scenarios. However, existing works tend to undervalue the step of instantiation and heavilyrely on pre-built concept taxonomies and human annotations to collect both types of knowledge, resulting in a lack of instantiated knowledge to complete reasoning, high cost, and limited scalability. To tackle these challenges, we introduce CANDLE (ConceptuAlizationand INstantiation Distillation from Large Language ModEls), a distillation framework that iteratively performs contextualized conceptualization and instantiation over commonsense knowledge bases by instructing large language models to generate both types of knowledge with critic filtering. By applying CANDLE to ATOMIC (Sap et al., 2019a), we construct a comprehensive knowledge base comprising six million conceptualizations and instantiated commonsense knowledge triples. Both types of knowledge are firmly rooted in the original ATOMIC dataset, and intrinsic evaluations demonstrate their exceptional quality and diversity. Empirical results indicate that distilling CANDLE on student models provides benefits across three downstream tasks. Our data and models are publicly available at https://github.com/HKUST-KnowComp/CANDLE.
pdf
bib
abs
KNOWCOMP POKEMON Team at DialAM-2024: A Two-Stage Pipeline for Detecting Relations in Dialogue Argument Mining
Zihao Zheng
|
Zhaowei Wang
|
Qing Zong
|
Yangqiu Song
Proceedings of the 11th Workshop on Argument Mining (ArgMining 2024)
Dialogue Argument Mining(DialAM) is an important branch of Argument Mining(AM). DialAM-2024 is a shared task focusing on dialogue argument mining, which requires us to identify argumentative relations and illocutionary relations among proposition nodes and locution nodes. To accomplish this, we propose a two-stage pipeline, which includes the Two-Step S-Node Prediction Model in Stage 1 and the YA-Node Prediction Model in Stage 2. We also augment the training data in both stages and introduce context in the prediction of Stage 2. We successfully completed the task and achieved good results. Our team KNOWCOMP POKEMON ranked 1st in the ARI Focused score and 4th in the Global Focused score.
2023
pdf
bib
abs
Gold: A Global and Local-aware Denoising Framework for Commonsense Knowledge Graph Noise Detection
Zheye Deng
|
Weiqi Wang
|
Zhaowei Wang
|
Xin Liu
|
Yangqiu Song
Findings of the Association for Computational Linguistics: EMNLP 2023
Commonsense Knowledge Graphs (CSKGs) are crucial for commonsense reasoning, yet constructing them through human annotations can be costly. As a result, various automatic methods have been proposed to construct CSKG with larger semantic coverage. However, these unsupervised approaches introduce spurious noise that can lower the quality of the resulting CSKG, which cannot be tackled easily by existing denoising algorithms due to the unique characteristics of nodes and structures in CSKGs. To address this issue, we propose Gold (Global and Local-aware Denoising), a denoising framework for CSKGs that incorporates entity semantic information, global rules, and local structural information from the CSKG. Experiment results demonstrate that Gold outperforms all baseline methods in noise detection tasks on synthetic noisy CSKG benchmarks. Furthermore, we show that denoising a real-world CSKG is effective and even benefits the downstream zero-shot commonsense question-answering task. Our code and data are publicly available at https://github.com/HKUST-KnowComp/GOLD.
pdf
bib
abs
KnowComp Submission for WMT23 Sign Language Translation Task
Baixuan Xu
|
Haochen Shi
|
Tianshi Zheng
|
Qing Zong
|
Weiqi Wang
|
Zhaowei Wang
|
Yangqiu Song
Proceedings of the Eighth Conference on Machine Translation
Sign Language Translation (SLT) is a complex task that involves accurately interpreting sign language gestures and translating them into spoken or written language and vice versa. Its primary objective is to facilitate communication between individuals with hearing difficulties using deep learning systems. Existing approaches leverage gloss annotations of sign language gestures to assist the model in capturing the movement and differentiating various gestures. However, constructing a large-scale gloss-annotated dataset is both expensive and impractical to cover multiple languages, and pre-trained generative models cannot be efficiently used due to the lack of textual source context in SLT. To address these challenges, we propose a gloss-free framework for the WMT23 SLT task. Our system primarily consists of a visual extractor for extracting video embeddings and a generator responsible for producing the translated text. We also employ an embedding alignment block that is trained to align the embedding space of the visual extractor with that of the generator. Despite undergoing extensive training and validation, our system consistently falls short of meeting the baseline performance. Further analysis shows that our model’s poor projection rate prevents it from learning diverse visual embeddings. Our codes and model checkpoints are available at https://github.com/HKUST-KnowComp/SLT.
pdf
bib
abs
TILFA: A Unified Framework for Text, Image, and Layout Fusion in Argument Mining
Qing Zong
|
Zhaowei Wang
|
Baixuan Xu
|
Tianshi Zheng
|
Haochen Shi
|
Weiqi Wang
|
Yangqiu Song
|
Ginny Wong
|
Simon See
Proceedings of the 10th Workshop on Argument Mining
A main goal of Argument Mining (AM) is to analyze an author’s stance. Unlike previous AM datasets focusing only on text, the shared task at the 10th Workshop on Argument Mining introduces a dataset including both texts and images. Importantly, these images contain both visual elements and optical characters. Our new framework, TILFA (A Unified Framework for Text, Image, and Layout Fusion in Argument Mining), is designed to handle this mixed data. It excels at not only understanding text but also detecting optical characters and recognizing layout details in images. Our model significantly outperforms existing baselines, earning our team, KnowComp, the 1st place in the leaderboard of Argumentative Stance Classification subtask in this shared task.
pdf
bib
abs
KCTS: Knowledge-Constrained Tree Search Decoding with Token-Level Hallucination Detection
Sehyun Choi
|
Tianqing Fang
|
Zhaowei Wang
|
Yangqiu Song
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Large Language Models (LLMs) have demonstrated remarkable human-level natural language generation capabilities. However, their potential to generate misinformation, often called the *hallucination* problem, poses a significant risk to their deployment. A common approach to address this issue is to retrieve relevant knowledge and fine-tune the LLM with the knowledge in its input. Unfortunately, this method incurs high training costs and may cause catastrophic forgetting for multi-tasking models. To overcome these limitations, we propose a knowledge-constrained decoding method called KCTS (Knowledge-Constrained Tree Search), which guides a frozen LM to generate text aligned with the reference knowledge at each decoding step using a knowledge classifier score and MCTS (Monte-Carlo Tree Search). To adapt the sequence-level knowledge classifier to token-level guidance, we also propose a novel token-level hallucination detection method called RIPA (Reward Inflection Point Approximation). Our empirical results on knowledge-grounded dialogue and abstractive summarization demonstrate the strength of KCTS as a plug-and-play, model-agnostic decoding method that can effectively reduce hallucinations in natural language generation.
pdf
bib
abs
COLA: Contextualized Commonsense Causal Reasoning from the Causal Inference Perspective
Zhaowei Wang
|
Quyet V. Do
|
Hongming Zhang
|
Jiayao Zhang
|
Weiqi Wang
|
Tianqing Fang
|
Yangqiu Song
|
Ginny Wong
|
Simon See
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Detecting commonsense causal relations (causation) between events has long been an essential yet challenging task. Given that events are complicated, an event may have different causes under various contexts. Thus, exploiting context plays an essential role in detecting causal relations. Meanwhile, previous works about commonsense causation only consider two events and ignore their context, simplifying the task formulation. This paper proposes a new task to detect commonsense causation between two events in an event sequence (i.e., context), called contextualized commonsense causal reasoning. We also design a zero-shot framework: COLA (Contextualized Commonsense Causality Reasoner) to solve the task from the causal inference perspective. This framework obtains rich incidental supervision from temporality and balances covariates from multiple timestamps to remove confounding effects. Our extensive experiments show that COLA can detect commonsense causality more accurately than baselines.
2022
pdf
bib
abs
SubeventWriter: Iterative Sub-event Sequence Generation with Coherence Controller
Zhaowei Wang
|
Hongming Zhang
|
Tianqing Fang
|
Yangqiu Song
|
Ginny Wong
|
Simon See
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
In this paper, we propose a new task of sub-event generation for an unseen process to evaluate the understanding of the coherence of sub-event actions and objects. To solve the problem, we design SubeventWriter, a sub-event sequence generation framework with a coherence controller. Given an unseen process, the framework can iteratively construct the sub-event sequence by generating one sub-event at each iteration. We also design a very effective coherence controller to decode more coherent sub-events. As our extensive experiments and analysis indicate, SubeventWriter can generate more reliable and meaningful sub-event sequences for unseen processes.