Zhimeng Zhang


2024

pdf bib
Text-to-Song: Towards Controllable Music Generation Incorporating Vocal and Accompaniment
Zhiqing Hong | Rongjie Huang | Xize Cheng | Yongqi Wang | Ruiqi Li | Fuming You | Zhou Zhao | Zhimeng Zhang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

A song is a combination of singing voice and accompaniment. However, existing works focus on singing voice synthesis and music generation independently. Little attention was paid to exploring song synthesis. In this work, we propose a novel task called Text-to-Song synthesis which incorporates both vocal and accompaniment generation. We develop Melodist, a two-stage text-to-song method that consists of singing voice synthesis (SVS) and vocal-to-accompaniment (V2A) synthesis. Melodist leverages tri-tower contrastive pretraining to learn more effective text representation for controllable V2A synthesis. A Chinese song dataset mined from a music website is built to alleviate data scarcity for our research. The evaluation results on our dataset demonstrate that Melodist can synthesize songs with comparable quality and style consistency. Audio samples can be found in https://text2songMelodist.github.io/Sample/.

2022

pdf bib
Rethinking Multi-Modal Alignment in Multi-Choice VideoQA from Feature and Sample Perspectives
Shaoning Xiao | Long Chen | Kaifeng Gao | Zhao Wang | Yi Yang | Zhimeng Zhang | Jun Xiao
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Reasoning about causal and temporal event relations in videos is a new destination of Video Question Answering (VideoQA). The major stumbling block to achieve this purpose is the semantic gap between language and video since they are at different levels of abstraction. Existing efforts mainly focus on designing sophisticated architectures while utilizing frame- or object-level visual representations. In this paper, we reconsider the multi-modal alignment problem in VideoQA from feature and sample perspectives to achieve better performance. From the view of feature, we break down the video into trajectories and first leverage trajectory feature in VideoQA to enhance the alignment between two modalities. Moreover, we adopt a heterogeneous graph architecture and design a hierarchical framework to align both trajectory-level and frame-level visual feature with language feature. In addition, we found that VideoQA models are largely dependent on languagepriors and always neglect visual-language interactions. Thus, two effective yet portable training augmentation strategies are designed to strengthen the cross-modal correspondence ability of our model from the view of sample. Extensive results show that our method outperforms all the state-of the-art models on the challenging NExT-QA benchmark.