Zhouxing Shi


2024

pdf bib
Red Teaming Language Model Detectors with Language Models
Zhouxing Shi | Yihan Wang | Fan Yin | Xiangning Chen | Kai-Wei Chang | Cho-Jui Hsieh
Transactions of the Association for Computational Linguistics, Volume 12

The prevalence and strong capability of large language models (LLMs) present significant safety and ethical risks if exploited by malicious users. To prevent the potentially deceptive usage of LLMs, recent work has proposed algorithms to detect LLM-generated text and protect LLMs. In this paper, we investigate the robustness and reliability of these LLM detectors under adversarial attacks. We study two types of attack strategies: 1) replacing certain words in an LLM’s output with their synonyms given the context; 2) automatically searching for an instructional prompt to alter the writing style of the generation. In both strategies, we leverage an auxiliary LLM to generate the word replacements or the instructional prompt. Different from previous works, we consider a challenging setting where the auxiliary LLM can also be protected by a detector. Experiments reveal that our attacks effectively compromise the performance of all detectors in the study with plausible generations, underscoring the urgent need to improve the robustness of LLM-generated text detection systems. Code is available at https://github.com/shizhouxing/LLM-Detector-Robustness.

pdf bib
Defending LLMs against Jailbreaking Attacks via Backtranslation
Yihan Wang | Zhouxing Shi | Andrew Bai | Cho-Jui Hsieh
Findings of the Association for Computational Linguistics ACL 2024

Although many large language models (LLMs) have been trained to refuse harmful requests, they are still vulnerable to jailbreaking attacks which rewrite the original prompt to conceal its harmful intent. In this paper, we propose a new method for defending LLMs against jailbreaking attacks by “backtranslation”. Specifically, given an initial response generated by the target LLM from an input prompt, our backtranslation prompts a language model to infer an input prompt that can lead to the response. The inferred prompt is called the backtranslated prompt which tends to reveal the actual intent of the original prompt, since it is generated based on the LLM’s response and not directly manipulated by the attacker. We then run the target LLM again on the backtranslated prompt, and we refuse the original prompt if the model refuses the backtranslated prompt. We explain that the proposed defense provides several benefits on its effectiveness and efficiency. We empirically demonstrate that our defense significantly outperforms the baselines, in the cases that are hard for the baselines, and our defense also has little impact on the generation quality for benign input prompts. Our implementation is based on our library for LLM jailbreaking defense algorithms at https://github.com/YihanWang617/llm-jailbreaking-defense, and the code for reproducing our experiments is available at https://github.com/YihanWang617/LLM-Jailbreaking-Defense-Backtranslation.

2022

pdf bib
On the Sensitivity and Stability of Model Interpretations in NLP
Fan Yin | Zhouxing Shi | Cho-Jui Hsieh | Kai-Wei Chang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent years have witnessed the emergence of a variety of post-hoc interpretations that aim to uncover how natural language processing (NLP) models make predictions. Despite the surge of new interpretation methods, it remains an open problem how to define and quantitatively measure the faithfulness of interpretations, i.e., to what extent interpretations reflect the reasoning process by a model. We propose two new criteria, sensitivity and stability, that provide complementary notions of faithfulness to the existed removal-based criteria. Our results show that the conclusion for how faithful interpretations are could vary substantially based on different notions. Motivated by the desiderata of sensitivity and stability, we introduce a new class of interpretation methods that adopt techniques from adversarial robustness. Empirical results show that our proposed methods are effective under the new criteria and overcome limitations of gradient-based methods on removal-based criteria. Besides text classification, we also apply interpretation methods and metrics to dependency parsing. Our results shed light on understanding the diverse set of interpretations.

2020

pdf bib
Robustness to Modification with Shared Words in Paraphrase Identification
Zhouxing Shi | Minlie Huang
Findings of the Association for Computational Linguistics: EMNLP 2020

Revealing the robustness issues of natural language processing models and improving their robustness is important to their performance under difficult situations. In this paper, we study the robustness of paraphrase identification models from a new perspective – via modification with shared words, and we show that the models have significant robustness issues when facing such modifications. To modify an example consisting of a sentence pair, we either replace some words shared by both sentences or introduce new shared words. We aim to construct a valid new example such that a target model makes a wrong prediction. To find a modification solution, we use beam search constrained by heuristic rules, and we leverage a BERT masked language model for generating substitution words compatible with the context. Experiments show that the performance of the target models has a dramatic drop on the modified examples, thereby revealing the robustness issue. We also show that adversarial training can mitigate this issue.