Zihao Zhang


2025

pdf bib
Trucidator: Document-level Event Factuality Identification via Hallucination Enhancement and Cross-Document Inference
Zihao Zhang | Zhong Qian | Xiaoxu Zhu | Peifeng Li | Qiaoming Zhu
Proceedings of the 31st International Conference on Computational Linguistics

Document-level event factuality identification (DEFI) assesses the veracity degree to which an event mentioned in a document has happened, which is crucial for many natural language processing tasks. Previous work assesses evet factuality by solely relying on the semantic information within a single document, which fails to identify hard cases where the document itself is hallucinative or counterfactual. There is also a pressing need for more suitable data of this kind. To tackle these issues, we construct Factualusion, a novel corpus with hallucination features that can be used not only for DEFI but can also be applied for hallucination evaluation for large language models. We further propose Trucidator, a graph-based framework that constructs intra-document and cross-document graphs and employs a multi-task learning paradigm to acquire more robust node embeddings, leveraging cross-document inference for more accurate identification. Experiments show that our proposed framework outperformed several baselines, demonstrating the effectiveness of our method.

2024

pdf bib
LocalTweets to LocalHealth: A Mental Health Surveillance Framework Based on Twitter Data
Vijeta Deshpande | Minhwa Lee | Zonghai Yao | Zihao Zhang | Jason Brian Gibbons | Hong Yu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Prior research on Twitter (now X) data has provided positive evidence of its utility in developing supplementary health surveillance systems. In this study, we present a new framework to surveil public health, focusing on mental health (MH) outcomes. We hypothesize that locally posted tweets are indicative of local MH outcomes and collect tweets posted from 765 neighborhoods (census block groups) in the USA. We pair these tweets from each neighborhood with the corresponding MH outcome reported by the Center for Disease Control (CDC) to create a benchmark dataset, LocalTweets. With LocalTweets, we present the first population-level evaluation task for Twitter-based MH surveillance systems. We then develop an efficient and effective method, LocalHealth, for predicting MH outcomes based on LocalTweets. When used with GPT3.5, LocalHealth achieves the highest F1-score and accuracy of 0.7429 and 79.78%, respectively, a 59% improvement in F1-score over the GPT3.5 in zero-shot setting. We also utilize LocalHealth to extrapolate CDC’s estimates to proxy unreported neighborhoods, achieving an F1-score of 0.7291. Our work suggests that Twitter data can be effectively leveraged to simulate neighborhood-level MH outcomes.