Zijie Huang


2024

pdf bib
FUSE: Measure-Theoretic Compact Fuzzy Set Representation for Taxonomy Expansion
Fred Xu | Song Jiang | Zijie Huang | Xiao Luo | Shichang Zhang | Yuanzhou Chen | Yizhou Sun
Findings of the Association for Computational Linguistics ACL 2024

Taxonomy Expansion, which relies on modeling concepts and concept relations, can be formulated as a set representation learning task. The generalization of set, fuzzy set, incorporates uncertainty and measures the information within a semantic concept, making it suitable for concept modeling. Existing works usually model sets as vectors or geometric objects such as boxes, which are not closed under set operations. In this work, we propose a sound and efficient formulation of set representation learning based on its volume approximation as a fuzzy set. The resulting embedding framework, Fuzzy Set Embedding, satisfies all set operations and compactly approximates the underlying fuzzy set, hence preserving information while being efficient to learn, relying on minimum neural architecture. We empirically demonstrate the power of FUSE on the task of taxonomy expansion, where FUSE achieves remarkable improvements up to 23% compared with existing baselines. Our work marks the first attempt to understand and efficiently compute the embeddings of fuzzy sets.

2023

pdf bib
Concept2Box: Joint Geometric Embeddings for Learning Two-View Knowledge Graphs
Zijie Huang | Daheng Wang | Binxuan Huang | Chenwei Zhang | Jingbo Shang | Yan Liang | Zhengyang Wang | Xian Li | Christos Faloutsos | Yizhou Sun | Wei Wang
Findings of the Association for Computational Linguistics: ACL 2023

Knowledge graph embeddings (KGE) have been extensively studied to embed large-scale relational data for many real-world applications. Existing methods have long ignored the fact many KGs contain two fundamentally different views: high-level ontology-view concepts and fine-grained instance-view entities. They usually embed all nodes as vectors in one latent space. However, a single geometric representation fails to capture the structural differences between two views and lacks probabilistic semantics towards concepts’ granularity. We propose Concept2Box, a novel approach that jointly embeds the two views of a KG using dual geometric representations. We model concepts with box embeddings, which learn the hierarchy structure and complex relations such as overlap and disjoint among them. Box volumes can be interpreted as concepts’ granularity. Different from concepts, we model entities as vectors. To bridge the gap between concept box embeddings and entity vector embeddings, we propose a novel vector-to-box distance metric and learn both embeddings jointly. Experiments on both the public DBpedia KG and a newly-created industrial KG showed the effectiveness of Concept2Box.

2022

pdf bib
Multilingual Knowledge Graph Completion with Self-Supervised Adaptive Graph Alignment
Zijie Huang | Zheng Li | Haoming Jiang | Tianyu Cao | Hanqing Lu | Bing Yin | Karthik Subbian | Yizhou Sun | Wei Wang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Predicting missing facts in a knowledge graph (KG) is crucial as modern KGs are far from complete. Due to labor-intensive human labeling, this phenomenon deteriorates when handling knowledge represented in various languages. In this paper, we explore multilingual KG completion, which leverages limited seed alignment as a bridge, to embrace the collective knowledge from multiple languages. However, language alignment used in prior works is still not fully exploited: (1) alignment pairs are treated equally to maximally push parallel entities to be close, which ignores KG capacity inconsistency; (2) seed alignment is scarce and new alignment identification is usually in a noisily unsupervised manner. To tackle these issues, we propose a novel self-supervised adaptive graph alignment (SS-AGA) method. Specifically, SS-AGA fuses all KGs as a whole graph by regarding alignment as a new edge type. As such, information propagation and noise influence across KGs can be adaptively controlled via relation-aware attention weights. Meanwhile, SS-AGA features a new pair generator that dynamically captures potential alignment pairs in a self-supervised paradigm. Extensive experiments on both the public multilingual DBPedia KG and newly-created industrial multilingual E-commerce KG empirically demonstrate the effectiveness of SS-AGA