Zijie J. Wang


2023

pdf bib
DiffusionDB: A Large-scale Prompt Gallery Dataset for Text-to-Image Generative Models
Zijie J. Wang | Evan Montoya | David Munechika | Haoyang Yang | Benjamin Hoover | Duen Horng Chau
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

With recent advancements in diffusion models, users can generate high-quality images by writing text prompts in natural language. However, generating images with desired details requires proper prompts, and it is often unclear how a model reacts to different prompts or what the best prompts are. To help researchers tackle these critical challenges, we introduce DiffusionDB, the first large-scale text-to-image prompt dataset totaling 6.5TB, containing 14 million images generated by Stable Diffusion, 1.8 million unique prompts, and hyperparameters specified by real users. We analyze the syntactic and semantic characteristics of prompts. We pinpoint specific hyperparameter values and prompt styles that can lead to model errors and present evidence of potentially harmful model usage, such as the generation of misinformation. The unprecedented scale and diversity of this human-actuated dataset provide exciting research opportunities in understanding the interplay between prompts and generative models, detecting deepfakes, and designing human-AI interaction tools to help users more easily use these models. DiffusionDB is publicly available at: https://poloclub.github.io/diffusiondb.

pdf bib
WizMap: Scalable Interactive Visualization for Exploring Large Machine Learning Embeddings
Zijie J. Wang | Fred Hohman | Duen Horng Chau
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

Machine learning models often learn latent embedding representations that capture the domain semantics of their training data. These embedding representations are valuable for interpreting trained models, building new models, and analyzing new datasets. However, interpreting and using embeddings can be challenging due to their opaqueness, high dimensionality, and the large size of modern datasets. To tackle these challenges, we present WizMap, an interactive visualization tool to help researchers and practitioners easily explore large embeddings. With a novel multi-resolution embedding summarization method and a familiar map-like interaction design, WizMap enables users to navigate and interpret embedding spaces with ease. Leveraging modern web technologies such as WebGL and Web Workers, WizMap scales to millions of embedding points directly in users’ web browsers and computational notebooks without the need for dedicated backend servers. WizMap is open-source and available at the following public demo link: https://poloclub.github.io/wizmap.

2021

pdf bib
Putting Humans in the Natural Language Processing Loop: A Survey
Zijie J. Wang | Dongjin Choi | Shenyu Xu | Diyi Yang
Proceedings of the First Workshop on Bridging Human–Computer Interaction and Natural Language Processing

How can we design Natural Language Processing (NLP) systems that learn from human feedback? There is a growing research body of Human-in-the-loop (HITL) NLP frameworks that continuously integrate human feedback to improve the model itself. HITL NLP research is nascent but multifarious—solving various NLP problems, collecting diverse feedback from different people, and applying different methods to learn from human feedback. We present a survey of HITL NLP work from both Machine Learning (ML) and Human-computer Interaction (HCI) communities that highlights its short yet inspiring history, and thoroughly summarize recent frameworks focusing on their tasks, goals, human interactions, and feedback learning methods. Finally, we discuss future studies for integrating human feedback in the NLP development loop.

pdf bib
Dodrio: Exploring Transformer Models with Interactive Visualization
Zijie J. Wang | Robert Turko | Duen Horng Chau
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations

Why do large pre-trained transformer-based models perform so well across a wide variety of NLP tasks? Recent research suggests the key may lie in multi-headed attention mechanism’s ability to learn and represent linguistic information. Understanding how these models represent both syntactic and semantic knowledge is vital to investigate why they succeed and fail, what they have learned, and how they can improve. We present Dodrio, an open-source interactive visualization tool to help NLP researchers and practitioners analyze attention mechanisms in transformer-based models with linguistic knowledge. Dodrio tightly integrates an overview that summarizes the roles of different attention heads, and detailed views that help users compare attention weights with the syntactic structure and semantic information in the input text. To facilitate the visual comparison of attention weights and linguistic knowledge, Dodrio applies different graph visualization techniques to represent attention weights scalable to longer input text. Case studies highlight how Dodrio provides insights into understanding the attention mechanism in transformer-based models. Dodrio is available at https://poloclub.github.io/dodrio/.