Zijun Yao


2024

pdf bib
A Cause-Effect Look at Alleviating Hallucination of Knowledge-grounded Dialogue Generation
Jifan Yu | Xiaohan Zhang | Yifan Xu | Xuanyu Lei | Zijun Yao | Jing Zhang | Lei Hou | Juanzi Li
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Empowered by the large-scale pretrained language models, existing dialogue systems have demonstrated impressive performance conducting fluent and natural-sounding conversations. However, they are still plagued by the <b>hallucination</b> problem, causing unpredictable factual errors in the generated responses. Recently, knowledge-grounded dialogue generation models, that intentionally invoke external knowledge resources to more informative responses, are also proven to be effective in reducing hallucination. Following the idea of getting high-quality knowledge, a few efforts have achieved pretty good performance on this issue. As some inevitable knowledge noises may also lead to hallucinations, it is emergent to investigate the reason and future directions for building noise-tolerant methods in KGD tasks. In this paper, we analyze the causal story behind this problem with counterfactual reasoning methods. Based on the causal effect analysis, we propose a possible solution for alleviating the hallucination in KGD by exploiting the dialogue-knowledge interaction. Experimental results of our example implementation show that this method can reduce hallucination without disrupting other dialogue performance, while keeping adaptive to different generation models. We hope our efforts can support and call for more attention to developing lightweight techniques towards robust and trusty dialogue systems.

pdf bib
Evaluating Generative Language Models in Information Extraction as Subjective Question Correction
Yuchen Fan | Yantao Liu | Zijun Yao | Jifan Yu | Lei Hou | Juanzi Li
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Modern Large Language Models (LLMs) have showcased remarkable prowess in various tasks necessitating sophisticated cognitive behaviors. Nevertheless, a paradoxical performance discrepancy is observed, where these models underperform in seemingly elementary tasks like relation extraction and event extraction due to two issues in conventional evaluation. (1) The imprecision of existing evaluation metrics that struggle to effectively gauge semantic consistency between model outputs and ground truth, and (2) The inherent incompleteness of evaluation benchmarks, primarily due to restrictive human annotation schemas, resulting in underestimated LLM performances. Inspired by the principles in subjective question correction, we propose a new evaluation method, SQC-Score. This method innovatively utilizes LLMs, fine-tuned through subjective question correction data, to refine matching between model outputs and golden labels. Additionally, by incorporating a Natural Language Inference (NLI) model, SQC-Score enriches golden labels, addressing benchmark incompleteness by acknowledging correct yet previously omitted answers. Results on three information extraction tasks show that SQC-Score is more preferred by human annotators than the baseline metrics. Utilizing SQC-Score, we conduct a comprehensive evaluation of the state-of-the-art LLMs and provide insights for future research for information extraction. Dataset and associated codes can be accessed at our <a href=https://github.com/THU-KEG/SQC-Score> GitHub repository </a>.

pdf bib
Untangle the KNOT: Interweaving Conflicting Knowledge and Reasoning Skills in Large Language Models
Yantao Liu | Zijun Yao | Xin Lv | Yuchen Fan | Shulin Cao | Jifan Yu | Lei Hou | Juanzi Li
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Providing knowledge documents for large language models (LLMs) has emerged as a promising solution to update the static knowledge inherent in their parameters. However, knowledge in the document may conflict with the memory of LLMs due to outdated or incorrect knowledge in the LLMs’ parameters. This leads to the necessity of examining the capability of LLMs to assimilate supplemental external knowledge that conflicts with their memory. While previous studies have explained to what extent LLMs extract conflicting knowledge from the provided text, they neglect the necessity to <b>reason</b> with conflicting knowledge. Furthermore, there lack a detailed analysis on strategies to enable LLMs to resolve conflicting knowledge via prompting, decoding strategy, and supervised fine-tuning. To address these limitations, we construct a new dataset, dubbed KNOT, for knowledge conflict resolution examination in the form of question answering. KNOT facilitates in-depth analysis by dividing reasoning with conflicting knowledge into three levels: (1) Direct Extraction, which directly extracts conflicting knowledge to answer questions. (2) Explicit Reasoning, which reasons with conflicting knowledge when the reasoning path is explicitly provided in the question. (3) Implicit Reasoning, where reasoning with conflicting knowledge requires LLMs to infer the reasoning path independently to answer questions. We also conduct extensive experiments on KNOT to establish empirical guidelines for LLMs to utilize conflicting knowledge in complex circumstances. Dataset and associated codes can be accessed at our <a href=https://github.com/THU-KEG/KNOT>GitHub repository</a> .

pdf bib
Transferable and Efficient Non-Factual Content Detection via Probe Training with Offline Consistency Checking
Xiaokang Zhang | Zijun Yao | Jing Zhang | Kaifeng Yun | Jifan Yu | Juanzi Li | Jie Tang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper proposes PiNose, which trains a probing model on offline self-consistency checking results, thereby circumventing the need for human-annotated data and achieving transferability across diverse data distributions. As the consistency check process is offline, PiNose reduces the computational burden of generating multiple responses by online consistency verification. Additionally, it examines various aspects of internal states prior to response decoding, contributing to more effective detection of factual inaccuracies. Experiment results on both factuality detection and question answering benchmarks show that PiNose achieves surpassing results than existing factuality detection methods.

2023

pdf bib
KoRC: Knowledge Oriented Reading Comprehension Benchmark for Deep Text Understanding
Zijun Yao | Yantao Liu | Xin Lv | Shulin Cao | Jifan Yu | Juanzi Li | Lei Hou
Findings of the Association for Computational Linguistics: ACL 2023

Deep text understanding, which requires the connections between a given document and prior knowledge beyond its text, has been highlighted by many benchmarks in recent years. However, these benchmarks have encountered two major limitations. On the one hand, most of them require human annotation of knowledge, which leads to limited knowledge coverage. On the other hand, they usually use choices or spans in the texts as the answers, which results in narrow answer space. To overcome these limitations, we build a new challenging benchmark named KoRC in this paper. Compared with previous benchmarks, KoRC has two advantages, i.e., broad knowledge coverage and flexible answer format. Specifically, we utilize massive knowledge bases to guide annotators or large language models (LLMs) to construct knowledgable questions. Moreover, we use labels in knowledge bases rather than spans or choices as the final answers. We test state-of-the-art models on KoRC and the experimental results show that the strongest baseline only achieves 68.3% and 30.0% F1 measure in the IID and OOD test set, respectively. These results indicate that deep text understanding is still an unsolved challenge. We will release our dataset and baseline methods upon acceptance.

pdf bib
Probabilistic Tree-of-thought Reasoning for Answering Knowledge-intensive Complex Questions
Shulin Cao | Jiajie Zhang | Jiaxin Shi | Xin Lv | Zijun Yao | Qi Tian | Lei Hou | Juanzi Li
Findings of the Association for Computational Linguistics: EMNLP 2023

Large language models (LLMs) are capable of answering knowledge-intensive complex questions with chain-of-thought (CoT) reasoning. However, they tend to generate factually incorrect reasoning steps when the required knowledge is not available or up-to-date in models’ parameters. Recent works turn to retrieving external knowledge to augment CoT reasoning. Despite being promising, these chain-based methods suffer from: 1) Negative retrieval. Unnecessary or incorrect retrieval may mislead the reasoning; 2) Limited sight. Lacking the ability to look backward or forward, a local error in one step will propagate along the chain. In this paper, we propose a novel approach: Probabilistic Tree-of-thought Reasoning (ProbTree). First, LLMs translate a complex question into a query tree, in which each non-root node denotes a sub-question of its parent node. Then, probabilistic reasoning is conducted over the tree, by solving questions from leaf to root considering the confidence of both question decomposing and answering. During reasoning, for leaf nodes, LLMs choose a more confident answer from Closed-book QA that employs parametric knowledge and Open-book QA that employs retrieved external knowledge, thus eliminating the negative retrieval problem. For non-leaf nodes, with the hierarchical structure, LLMs have broader sights and are able to globally reason with the information from child nodes, thus recovering from local errors. The experiments on three Complex QA datasets under the open-domain setting show that our approach outperforms SOTA methods significantly, demonstrating the effect of probabilistic tree-of-thought reasoning.

pdf bib
FFAEval: Evaluating Dialogue System via Free-For-All Ranking
Zeyao Ma | Zijun Yao | Jing Zhang | Jifan Yu | Xiaohan Zhang | Juanzi Li | Jie Tang
Findings of the Association for Computational Linguistics: EMNLP 2023

Evaluating open-domain dialogue systems is currently an open question. Automatic evaluation metrics have shown poor correlation with human assessment in dialogue generation tasks. Human evaluation, which involves annotators for multi-dimension scoring, is trustworthy but time-consuming. In this work, we propose FFAEval, a reliable and efficient human evaluation framework using Free-For-All ranking approach. By sharing the dialogue history, the framework enables annotators to converse with multiple dialogue systems simultaneously in a single-blind, multi-turn manner. The subsequent free-for-all allows annotators to select the most favourable model in each turn from among all the participating dialogue systems. The final performance of each model is represented by calculating the TrueSkill score derived from the free-for-all competition. Our empirical study on English and Chinese dialogue systems demonstrates that FFAEval achieves a strong correlation with score-based human assessment compared to existing evaluation methods. We further prove the efficiency and stability of our framework in additional experiments. The source code and data are available on Github.

pdf bib
VisKoP: Visual Knowledge oriented Programming for Interactive Knowledge Base Question Answering
Zijun Yao | Yuanyong Chen | Xin Lv | Shulin Cao | Amy Xin | Jifan Yu | Hailong Jin | Jianjun Xu | Peng Zhang | Lei Hou | Juanzi Li
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

We present Visual Knowledge oriented Programming platform (VisKoP), a knowledge base question answering (KBQA) system that integrates human into the loop to edit and debug the knowledge base (KB) queries. VisKoP not only provides a neural program induction module, which converts natural language questions into knowledge oriented program language (KoPL), but also maps KoPL programs into graphical elements. KoPL programs can be edited with simple graphical operators, such as ”dragging” to add knowledge operators and ”slot filling” to designate operator arguments. Moreover, VisKoP provides auto-completion for its knowledge base schema and users can easily debug the KoPL program by checking its intermediate results. To facilitate the practical KBQA on a million-entity-level KB, we design a highly efficient KoPL execution engine for the back-end. Experiment results show that VisKoP is highly efficient and user interaction can fix a large portion of wrong KoPL programs to acquire the correct answer. The VisKoP online demo, highly efficient KoPL engine, and screencast video are now publicly available.

2022

pdf bib
Invernet: An Inversion Attack Framework to Infer Fine-Tuning Datasets through Word Embeddings
Ishrak Hayet | Zijun Yao | Bo Luo
Findings of the Association for Computational Linguistics: EMNLP 2022

Word embedding aims to learn the dense representation of words and has become a regular input preparation in many NLP tasks. Due to the data and computation intensive nature of learning embeddings from scratch, a more affordable way is to borrow the pretrained embedding available in public and fine-tune the embedding through a domain specific downstream dataset. A privacy concern can arise if a malicious owner of the pretrained embedding gets access to the fine-tuned embedding and tries to infer the critical information from the downstream datasets. In this study, we propose a novel embedding inversion framework called Invernet that materializes the privacy concern by inferring the context distribution in the downstream dataset, which can lead to key information breach. With extensive experimental studies on two real-world news datasets: Antonio Gulli’s News and New York Times, we validate the feasibility of proposed privacy attack and demonstrate the effectiveness of Invernet on inferring downstream datasets based on multiple word embedding methods.

pdf bib
Dependency Parsing via Sequence Generation
Boda Lin | Zijun Yao | Jiaxin Shi | Shulin Cao | Binghao Tang | Si Li | Yong Luo | Juanzi Li | Lei Hou
Findings of the Association for Computational Linguistics: EMNLP 2022

Dependency parsing aims to extract syntactic dependency structure or semantic dependency structure for sentences.Existing methods for dependency parsing include transition-based method, graph-based method and sequence-to-sequence method.These methods obtain excellent performance and we notice them belong to labeling method.Therefore, it may be very valuable and interesting to explore the possibility of using generative method to implement dependency parsing.In this paper, we propose to achieve Dependency Parsing (DP) via Sequence Generation (SG) by utilizing only the pre-trained language model without any auxiliary structures.We first explore different serialization designing strategies for converting parsing structures into sequences.Then we design dependency units and concatenate these units into the sequence for DPSG.We verify the DPSG is capable of parsing on widely used DP benchmarks, i.e., PTB, UD2.2, SDP15 and SemEval16.In addition, we also investigate the astonishing low-resource applicability of DPSG, which includes unsupervised cross-domain conducted on CODT and few-shot cross-task conducted on SDP15.Our research demonstrates that sequence generation is one of the effective methods to achieve dependency parsing.Our codes are available now.

pdf bib
Program Transfer for Answering Complex Questions over Knowledge Bases
Shulin Cao | Jiaxin Shi | Zijun Yao | Xin Lv | Jifan Yu | Lei Hou | Juanzi Li | Zhiyuan Liu | Jinghui Xiao
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Program induction for answering complex questions over knowledge bases (KBs) aims to decompose a question into a multi-step program, whose execution against the KB produces the final answer. Learning to induce programs relies on a large number of parallel question-program pairs for the given KB. However, for most KBs, the gold program annotations are usually lacking, making learning difficult. In this paper, we propose the approach of program transfer, which aims to leverage the valuable program annotations on the rich-resourced KBs as external supervision signals to aid program induction for the low-resourced KBs that lack program annotations. For program transfer, we design a novel two-stage parsing framework with an efficient ontology-guided pruning strategy. First, a sketch parser translates the question into a high-level program sketch, which is the composition of functions. Second, given the question and sketch, an argument parser searches the detailed arguments from the KB for functions. During the searching, we incorporate the KB ontology to prune the search space. The experiments on ComplexWebQuestions and WebQuestionSP show that our method outperforms SOTA methods significantly, demonstrating the effectiveness of program transfer and our framework. Our codes and datasets can be obtained from https://github.com/THU-KEG/ProgramTransfer.

2021

pdf bib
Interpretable and Low-Resource Entity Matching via Decoupling Feature Learning from Decision Making
Zijun Yao | Chengjiang Li | Tiansi Dong | Xin Lv | Jifan Yu | Lei Hou | Juanzi Li | Yichi Zhang | Zelin Dai
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Entity Matching (EM) aims at recognizing entity records that denote the same real-world object. Neural EM models learn vector representation of entity descriptions and match entities end-to-end. Though robust, these methods require many annotated resources for training, and lack of interpretability. In this paper, we propose a novel EM framework that consists of Heterogeneous Information Fusion (HIF) and Key Attribute Tree (KAT) Induction to decouple feature representation from matching decision. Using self-supervised learning and mask mechanism in pre-trained language modeling, HIF learns the embeddings of noisy attribute values by inter-attribute attention with unlabeled data. Using a set of comparison features and a limited amount of annotated data, KAT Induction learns an efficient decision tree that can be interpreted by generating entity matching rules whose structure is advocated by domain experts. Experiments on 6 public datasets and 3 industrial datasets show that our method is highly efficient and outperforms SOTA EM models in most cases. We will release the codes upon acceptance.